
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1998

The analysis of aqueous mixtures using liquid
chromatography: electrospray mass spectrometry
Steven Kent Johnson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Analytical Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Johnson, Steven Kent, "The analysis of aqueous mixtures using liquid chromatography: electrospray mass spectrometry " (1998).
Retrospective Theses and Dissertations. 11861.
https://lib.dr.iastate.edu/rtd/11861

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=lib.dr.iastate.edu%2Frtd%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/11861?utm_source=lib.dr.iastate.edu%2Frtd%2F11861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order. 

UMI 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Aibor MI 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

NOTE TO USERS 

The original manuscript received by UMI contains pages with 
slanted print. Pages were microfilmed as received. 

This reproduction is the best copy available 

UMI 



www.manaraa.com



www.manaraa.com

The analysis of aqueous mixtures using liquid 

chromatography - electrospray mass spectrometry 

by 

Steven Kent Johnson 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major: Analytical Chemistry 

Major Professor: Dr. R. S. Houk 

Iowa State University 

Ames, Iowa 

1998 



www.manaraa.com

UMI Niunber: 9841056 

UMI Microform 9841056 
Copyright 1998, by UMI Company. All rights reserved. 

This microform edition Is protected against unauthorized 
copying under Title 17, United States Code. 

UMI 
300 North Zeeh Road 
Ann Arbor, MI 48103 



www.manaraa.com

ii 

Graduate College 
Iowa State University 

This is to certify that the Doctoral dissertation of 

Steven Kent Johnson 

has met the dissertation requirements of Iowa State University 

Major Professor 

For the Major Program 

For the Graduate College 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

iii 

To my parents, for their constant support. 



www.manaraa.com

vi 

1 
1 
5 
6 
9 

11 

16 
16 
17 
20 
26 
32 
33 
33 

51 
51 
52 
55 
60 
72 
73 
73 

83 
83 
84 
89 
95 

iv 

TABLE OF CONTENTS 

GENERAL INTRODUCTION 
Historical Perspective of LC-MS and Interface Developments 
Electrospray - Mass Spectrometry Historical Perspective 
Electrospray Ionization Process 
Dissertation Objectives and Organization 
References 

DETERMINATION OF SMALL CARBOXYLIC ACIDS 
BY ION EXCLUSION CHROMATOGRAPHY WITH 
ELECTROSPRAY MASS SPECTROMETRY 

Abstract 
Introduction 
Experimental Section 
Results and Discussion 
Conclusions 
Acknowledgements 
References 

ELECTROCHEMICAL INCINERATION OF 
BENZOQUINONE IN AQUEOUS MEDIA USING 
A QUATERNARY METAL OXIDE ELECTRODE 
IN THE ABSENCE OF A SOLUBLE 
SUPPORTING ELECTROLYTE 

Abstract 
Introduction 
Experimental Section 
Results and Discussion 
Conclusions 
Acknowledgements 
References 

THE DETERMINATION OF ELECTROCHEMICAL 
INCINERATION PRODUCTS OF 4-CHLOROPHENOL 
BY LIQUID CHROMATOGRAPHY - ELECTROSPRAY 
MASS SPECTROMETRY 

Abstract 
Introduction 
Experimental Section 
Results and Discussion 



www.manaraa.com

V 

Conclusions 104 
Acknowledgements 106 
References 106 

CHAPTER 5. DETERMINATION OF SMALL CARBOXYLIC ACIDS 
BY CAPILLARY ELECTROPHORESIS WITH 
ELECTROSPRAY MASS SPECTROMETRY 120 

Abstract 120 
Introduction 120 
Experimental Section 123 
Results and Discussion 128 
Conclusions 130 
Acknowledgements 130 
References 130 

CHAPTER 6. GENERAL CONCLUSIONS 141 
References 143 

ACKNOWLEDGMENTS 145 



www.manaraa.com

vi 

ABSTRACT 

The focus of this dissertation is the use of chromatographic methods coupled with 

electrospray mass spectrometry (ES-MS) for the determination of both organic and 

inorganic compounds in aqueous solutions. 

The combination of liquid chromatography (LC) methods and ES-MS offers one of 

the foremost methods for determining compounds in complex aqueous solutions. In this 

work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed 

phase chromatography, and ion exchange chromatography, as well as capillary 

electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS 

techniques require no sample preparation or analyte derivitization, which makes it 

possible to observe a wide variety of analytes as they exist in solution. The majority of 

this work focuses on the use of LC-ES-MS for the determination of unknown products 

and intermediates formed during electrochemical incineration (ECI), an experimental 

waste remediation process. 

Ion exclusion chromatography (lEC) was used to study small carboxylic acids. 

The effect of pH, solvent composition, sheath gas make-up, and presence of concentrated 

matrix was observed. Detection limits were found to range from 40 to 200 ppb for the 

direct infusion of most carboxylic acids and from 2 to 8 ppm for lEC-ES-MS. 

The ECI of benzoquinone is studied using lEC-ES-MS. Unknown intermediates 

and products are identified and observed as a function of ECI time. The ECI procedure 

is described in detail and electrode efficiency is evaluated. Mechanisms are also 

proposed for the production of maleic, succinic, malonic, and acetic acids. 
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The ECI of 4-chlorophenol is observed using reversed phase liquid 

chromatography - ES-MS to study aromatic compounds, and ion exchange 

chromatography - ES-MS for organic and inorganic ions. The majority of this work is 

accomplished with ion exchange chromatography - ES-MS, which requires a suppressor 

to remove sodium ions from the mobile phase. The system has proven effective in the 

identification of a wide range of unknown compounds in complex aqueous solutions. 

Detection limits range from 50 ppb to 4 ppm. 

Capillary electrophoresis was also studied as a possible separation method coupled 

to an ES-MS. Different mobile phases are examined and tested with CE-ES-MS for the 

determination of carboxylic acids. Detection limits range between 1 and 10 ppm. 
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CHAPTER 1. GENERAL INTRODUCTION 

There is tremendous potential in coupling the resolving capability of liquid 

chromatography (LC) with the structural information and specific detection of 

electrospray - mass spectrometry (ES-MS). The resulting combination, LC-ES-MS, is a 

powerful analytical technique capable of accurate identification of unknown compounds 

in mixtures. LC used with traditional absorption detection methods does not yield the 

selectivity of LC-ES-MS. The widely used gas chromatography - mass spectrometry 

(GC-MS) methods are inadequate for nonvolatile, thermally unstable, and polar 

compounds [1]. GC-MS often requires preparation and derivatization of the sample 

before it can be injected onto the column. LC-ES-MS requires no preparation or 

derivatization, which makes it possible to observe a wide variety of analytes as they exist 

in aqueous solutions. 

Historical Perspective of LC-MS and Interface Developments 

The combination of LC and MS offers the analytical chemist one of the most 

powerful techniques for the determination of unknown compounds. Attempts to couple 

LC and MS systems on-line by various laboratories began in the 1960's [2], but were 

unsuccessful due to technological problems that could not be overcome at the time. Some 

researchers considered off-line techniques with independent collection of liquid fractions 

of effluent, evaporation of solvent, and transfer of solute to MS as the only realistic 

method of using LC and MS together [3-5]. Successful on-line LC-MS results were not 
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reported until the 1970's by the laboratories of E. C. Homing, F, W. McLafferty, and 

R. P. W. Scott [6-8]. The first successful commercially available LC-MS interface was 

the transport, or moving-belt, system designed by McFadden [2,9] in which the 

chromatography effluent is deposited on a moving stainless steel belt which transports the 

sample to the mass spectrometer. The effluent solvent in the transport system is removed 

in a vacuum before the analyte reaches the ion source and is volatilized. The moving belt 

system was utilized and improved for over a decade [4,5,10-13]. 

Direct liquid injection (DLI) is one method of on-line LC-MS [14-18]. It was 

first developed in the laboratory of F.W. McLafferty [14] with similar work reported 

later by Henion [18]. In a DLI method, the highest fraction of HPLC effluent compatible 

with the vacuum system of the MS is introduced into the MS ion source. The gas flow 

produced from the effluent of the conventional LC column was twenty times higher than 

typical vacuum system could withstand at the time of the early DLI experiments, so 

significant quantities of the effluent were split from the flow, and only a small fraction, 

1-5%, went to the MS. The requirement of such a large split seriously reduced the 

usefulness of DLI-LC-MS. Cryogenic pumps with improved vacuum efficiency were 

utilized to handle higher flow rates of up to 100 ^1/min which increased the use of DLI 

methods somewhat [16,17,19,20]. 

Many developments over the past twenty years have improved the performance of 

LC-MS. Some of the greatest improvements have resulted from advancements in micro 

HPLC techniques [21-26] which reduce the flow from the column to 10 - 50 ^1/min and 

eliminate the need for splitting. Another area of significant advancements in LC-MS has 
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been the development of effective new systems to interface LC and MS. The 

fundamental problem of LC-MS with conventional flow rates has been the inability of the 

mass spectrometer vacuum system to withstand all the solvent vapor of the evaporated 

effluent. Thermospray and atmospheric pressure ionization (API) sources have been 

developed to successfully eliminate vacuum load difficulties in LC-MS. 

Thermospray 

The thermospray ionization interface [27-29] significantly increased the acceptance 

of LC-MS, because it readily accommodates conventional reversed phase flow rates and 

eluent compositions, and it is a relatively simple and rugged system that does not require 

unusual training to operate. The technique was first developed by Vestal and co-workers 

[27] in 1983. In thermospray ionization an aqueous sample is passed through a heated 

metal capillary tube. Ions are produced by direct ion evaporation [30] of a sample ion or 

by a two-step process similar to conventional chemical ionization (CI), where an ion of 

electrolyte, typically ammonium acetate, ejected from a droplet reacts with a sample 

molecule in the gas phase to generate a sample ion. Thermospray uses an additional 

vacuum line directly at the ion source to maintain vacuum while accommodating up to 2 

ml/min of effluent flow rate. The technique produces accurate molecular weight 

information but thermospray's limitations include difficulty in sensitive temperature 

control, thermal degradation, poor detection limits, and inability to handle low liquid 

flow. 
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API sources 

API sources create droplets and ions from LC effluent in an atmospheric pressure 

region and then draw ions into a MS. The first work using API sources was done by 

Homing and his co-workers [31-35]. Homing used heated nitrogen gas to volatize the 

sample and thermal electrons of a corona discharge to ionize the sample. The 

development of API sources has grown rapidly over the past 15 years and three API 

sources will be discussed here: heated pneumatic nebulizer, liquid ion evaporation, both 

originally reported in 1983, and electrospray, first developed in 1984. 

Heated pneumatic nebulizer 

The heated pneumatic nebulizer [36-38] reported by Thomson in 1983 is an API 

source in which a liquid sample passes through a heated metal tube surrounded by a 

coaxial nebulizer gas. The combination of heat and gas flow desolvates the nebulized 

droplets to produce a dry vapor of solvent and analyte molecules which pass through a 

corona discharge created from a charged needle in the atmospheric pressure region. 

Heated pneumatic nebulizer ionization can operate with flow rates up to 2 ml/min and it 

is robust enough to tolerate volatile salts, acids, bases, and other chromatography 

additives. The technique is a mild ionization source, and it can not offer much structural 

data from fragmentation. 

Liquid ion evaporation 

Liquid ion evaporation, developed by Irabame and Thomson, was reported in 

1983 [30]. In this technique, the liquid sample is passed through a pneumatic nebulizer 

into the atmospheric pressure interface region. Charge is transferred to the droplets from 
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a small high-voltage electrode located near the nebulizer tube. The sample is not heated 

and conventional flow rates are acceptable. Liquid ion evaporation is well suited for 

easily ionized and polar analytes, and the mild ionization at room temperature makes 

liquid ion evaporation very well suited for the production of doubly charged ions [39]. 

However, the technique can not be used for analytes that are difficult to ionize, and 

observed ions can experience substantial clustering due to the mild ionization conditions. 

Electrospray 

In electrospray ionization, the liquid sample is passed through a metal capillary 

tube at a high-voltage potential, where charge is transferred to the solution before 

droplets are formed. The technique enables spectra to be obtained from a variety of 

compounds and offers great flexibility in ion extraction conditions, making possible the 

formation of fragment, molecular, and cluster ions. The electrospray LC-MS interface 

will be discussed in greater detail in the next section. 

Electrospray - Mass Spectrometry Historical Perspective 

The first report of an electrospray-type phenomena dates back almost three 

hundred years ago to the experiments of Bose [40], while the first description of an actual 

electrospray was published by Zeleny [41] in 1917. Electrospray (ES) was not used as an 

ionization source until the late 1960's when Dole and co-workers [42,43] observed ion 

retardation and ion mobility using ES to produce gas phase macro-ions. Fenn [44] and 

Aleksandrov [45,46] combined electrospray ionization and mass spectrometry (ES-MS), 
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working independently of each other in 1984. Whitehouse, Fenn, and co-workers [47] 

gave the first detailed description of an ES interface for LC-MS in 1985, 

Although ES-MS offers a relatively simple method for ionizing LC 

effluent, flow-rate restrictions diminished the usefulness of LC-ES-MS. lonspray, or 

pneumatically assisted ES interface, which combines ESI and pneumatic nebulization, was 

introduced in 1987 [48]. The ionspray interface can introduce flow-rates of 200 ^1/min. 

Increasingly higher flow-rates up to 2ml/min can be achieved currently with minor 

modifications, such as liquid shield [49] and TurboIonSpray [50]. 

Electrospray Ionization Process 

Although ES-MS is relatively new, the ESI process has been investigated 

extensively [51-58]. ESI requires four steps: the production of highly charged droplets, 

solvent evaporation, Rayleigh fission, and finally the production of gas phase ions. 

Charged droplet formation 

Charged droplets are generally produced by applying a high electric potential to a 

stainless steel capillary tube, or electrode tube. As the sample solution passes through 

the electrode tube, charge is transferred to the liquid. A potential difference of 3-6 kV is 

typically applied between the electrode tube and a counter electrode located about 1 cm 

away. In pure ESI, the electric stress caused by the potential difference is the sole 

method of droplet formation. In the more common pneumatically assisted ESI, a 

nebulizer gas is forced around the electrode tube to facilitate droplet formation. Liquid 

flow-rate and solvent composition are important factors in droplet production. Pure ESI 
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has typical flow-rates of 1-10 /il/min, while pneumatically assisted ESI has flow rates up 

to 2(X) fiMmn [48]. Organic solvents, such as methanol or propanol, are required for 

droplet formation and efficient evaporation, and supporting electrolyte is typically used to 

assure effective charge transfer to solution droplets. 

Solvent evaporation and Rayleigh fission 

Droplets formed at the electrode tube experience significant physical changes 

before reaching the mass spectrometer. In the Perkin Elmer-Sciex API/1 instrument used 

for this work, the charged droplets are sampled into an interface region, containing a 

drying, or curtain gas heated to 60°C and bordered by two charged plates as shown in 

figure 1. The curtain gas stimulates collision-induced dissociation of solvent clusters, and 

it also prevents clogging of the small, 100 /xm diameter, sampling orifice opening. 

Organic solvents in the solution also increase the evaporation rate and reduce clogging. 

As the solvent of the charged droplets evaporates, the droplets shrink, and as the droplet 

shrinks the similar charges inside the droplet are forced closer together. Eventually, the 

coulombic repulsion between the similar charged ions exceeds the surface tension of the 

droplet. At this point, the droplet undergoes Rayleigh fission, a process in which small, 

highly-charged droplets are expelled from the larger initial droplets. These small 

expelled droplets have been measured to contain 15% of the original droplet's excess 

charge and only 2% of its original mass. Evaporation and Rayleigh fission can occur 

repeatedly, producing smaller and smaller droplets. A typical beginning droplet (r = 1.5 

/tm, charge = 8 x IC'^C at 35 °C) will go through an average of three fissions in 

roughly 500 /ts before emitting gas phase ions [59]. 
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Interface Plate (IN) 

Solution Capillary 

Ionization Needle 
asv) 

Orifice Plate (RO) 

RF only Rods Quadrupole 
(OR) (Rl) 

Figure 1: PE>Sciex API/1 Electrospray Mass Spectrometer 

Productioii of gas phase ions 

The mechanism that produces gas phase ions from charged droplets is uncertain 

[60-62], Two theories have been suggested, ion evaporation theory (lET) [63,64] and 

single ion droplet theory (SIDT) [42,43,65,66]. The lET was proposed by Iribame and 

Thomson in 1976 [63]. It states that a single solvated ion is emitted from the surface of 

the droplet when the surface charge density of the droplet is strong enough to desorb 

ions. The SIDT was originally proposed by Rollgen in 1983 [65], and it states that 

through evaporation and Rayleigh fission the droplets will become so small that they 

contain only one ion. As this micro-droplet undergoes evaporation, the droplet will be 
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converted to an ion in the gas phase. Experiments to determine the exact mechanism for 

gas phase ion production have been inconclusive. lET depends on significant charge 

density on the droplet surface, and SIDT depends on the production of extremely small 

droplets. Both conditions are feasible in the ESI process. 

The gas phase ions produced in the interface region enter a high vacuum region 

containing the quadrupole mass analyzer through the 100 nm diameter sampling orifice. 

Most other API source designs are derived from the interface described by Whitehouse et 

al [47], using a two stage vacuum system, and a sample transfer capillary. The Perkin 

Elmer - Sciex instrument used for this work incorporates a single quadrupole mass 

analyzer and a channel electron multiplier for detection. 

Dissertation Objectives and Organization 

The emphasis of this thesis is the use of LC-ES-MS to identify intermediate and 

product compounds resulting from the electrochemical incineration (ECI) of organic 

molecules in aqueous solutions. ECI is a waste remediation process whereby oxygen 

atoms are transferred from water in the solvent phase to the oxidation products by direct 

or indirect reactions on the anode surface. ECI is a versatile, energy efficient, 

environmentally compatible, and low cost method for elimination of organic wastes. The 

LC-ES-MS techniques described for the identification of ECI unknowns require no 

sample preparation or analyte derivatization. Limited sample preparation reduces the 

possibility of altering the analytes, and makes it possible to analyze the sample as it exists 

in solution. 
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Chapters 2, 3, 4, and 5 of this thesis stand alone as scientific manuscripts and are 

either published, submitted for publication or ready for submission. Chapter 6 is a 

general conclusion with suggestions for future research. 

Chapter 2 presents preliminary studies using ion exclusion chromatography (lEC) 

and ES-MS to analyzes mixtures of carboxylic acids. Compromise experimental 

parameters were evaluated to observe several organic acids. The effects of sheath gas, 

solvent composition, concentrated matrix ions, and pH of solution on sensitivity and 

linearity were examined. A basic isopropanol solvent with nitrogen sheath gas yielded 

the best results and detection limits from 40 to 200 ppb for direct infusion and 2-8 ppm 

for lEC-ES-MS. The presence of concentrated matrix ions can suppress the analyte 

signal significantly. These matrix effects are minimized by chromatographic separation; 

the use of intemal standards compensates for most of the remaining matrix effects. In 

most cases the sample is injected directly onto the column with little or no preparation. 

A small additional flow of organic solvent with pH adjustment is added to the sample 

after separation and before reaching the ES-MS. 

Chapter 3 examines the ECI products and intermediates of benzoquinone using the 

ion exclusion chromatography - ES-MS set-up described in chapter 2. Unknown 

intermediates and products were identified and studied as a function of ECI time. The 

ECI procedure is described and electrode efficiency is evaluated. Mechanisms are 

proposed for the production of maleic, succinic, malonic, and acetic acids. 

Chapter 4 presents the study of intermediates and products during the ECI of 

chlorophenol. In this study a TurboIonSpray ionization source is used with a mass 
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spectrometer. The majority of the unknown detennination is accomplished using ion 

exchange chromatography coupled to the TurboIonSpray mass spectrometer. A 

suppressor column is also placed between the ion chromatography column and the 

electrospray interface to eliminate sodium cations from the eluent. Reversed phase 

chromatography was also used with ES-MS for the determination of unknown ECI 

samples. The major intermediates and products of ECI were maleic, succinic, malonic, 

and acetic acids, as well as chloride, chlorate, and perchlorate ions. 

Chapter 5 details a make-up liquid sheath flow system for coupling capillary 

electrophoresis with electrospray mass spectrometry for the determination of carboxylic 

acids. Maleic, succinic, malonic, and glutaric acids were separated using capillary 

electrophoresis with an aqueous mobile phase containing 1,2,4,5-benzenetetracarboxylic 

acid, 2,6-naphthalenedisulfonic acid, methanol, and diethylenetriamine. Optimum mobile 

phase composition and separation conditions are reported and the system is evaluated 

using analytical figures of merit such as resolution and detection limits. 
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CHAPTER 2. DETERMINATION OF SMALL CARBOXYLIC 
ACIDS BY ION EXCLUSION CHROMATOGRAPHY WITH 

ELECTROSPRAY MASS SPECTROMETRY 

A paper published in Analytica Chimica Acta' 

Steve K. Johnson, Linda L. Houk, Jianren Feng, Dennis C. Johnson, R. S. Houk^ 

Abstract 

Ion exclusion chromatography (lEC) is used with electrospray mass spectrometry 

(ES-MS) to analyze a mixture of formic, glyoxylic, oxalic, 2-hydroxyisobutyric, and 

maleic acids. Compromise experimental parameters were evaluated. Ion extraction 

voltages can be found that produce reasonable signals from negative parent ions ([M-H]*) 

of these compounds as well as succinic, malic, 1-hexanoic, malonic, and tricarballylic 

acids. The effects of sheath gas, solvent composition, concentrated matrix ions, and pH 

of solution on sensitivity and linearity were examined. A basic isopropanol solvent with 

nitrogen sheath gas yield the best results. Detection limits are 40 to 200 ppb for direct 

infusion of sample into the ES-MS and 2 to 8 ppm for lEC-ES-MS. The presence of 

concentrated matrix ions can suppress the analyte signal significantly. These matrix 

effects are minimized by chromatographic separation and internal standards. In most 

cases, the sample is injected directly onto the column with little or no preparation. A 

small additional flow of organic solvent with pH adjustment is added before the sample 

reaches the ES-MS. 

'Reprinted with permission of Analytica Chimica Acta, 1997, 341, 205. 

^Author for correspondence 
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Introduction 

A rapid and sensitive method for the determination of carboxylic acids in 

environmental and biological samples is needed. Applications for such a procedure are 

numerous. Recent research has implicated carboxylic acids in the acidification of 

environmental water, such as rain and snow [1,2]. Carboxylic acids are monitored in 

sludge from sewage treatment plants, as these compounds destroy methane-producing 

bacteria [3]. Other studies of environmental interest include the decomposition of toxic 

aromatic hydrocarbons to CO2 via carboxylic acid intermediates [4,5]. Characterization 

of carboxylic acids in biological fluids also helps identify inborn errors of metabolism 

[6,7,8]. 

Currentiy, the most sensitive method for the identification and quantification of 

carboxylic acids is gas chromatography - mass spectrometry (GC-MS), with typical 

detection limits around 1 ppm for low molecular weight compounds [9,10]. However, 

GC-MS usually requires time consuming separation and/or derivitization procedures to 

remove the analyte from the sample matrix before injection into the GC [6]. 

Electrospray mass spectrometry (ES-MS) [11,12] can potentially measure polar, labile 

solutes in aqueous solutions without these sample preparation steps. Several studies have 

demonstrated the use of LC-ES-MS for large biological molecules [13,14,15,16], but 

much less work has been published using LC-ES-MS for molecules of low molecular 

weight [17]. In the present work small carboxylic acids are determined by lEC-ES-MS 

with very little sample preparation. An aqueous sample is simply injected onto the EEC 

column. The chromatographic system is coupled direcUy to the mass spectrometer. 
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However, because of substantial differences in flow rates between the two systems, there 

are some challenges to be addressed. 

There has been some prior work on LC-MS of carboxylic acids. Pacholec et al. 

joined high performance liquid chromatography (HPLC), in particular lEC, with 

thermospray MS to characterize mixtures of organic acids [18]. Detection limits of 10 

ppm were observed for glycolic, acetic, propionic, and butyric acids. However, a 

hydroxyacid and three dibasic acids produced no usable spectra. Detection limits in the 

part per billion range were achieved by Tsai et al. using an elaborate post-column 

derivatization and moving belt interface with HPLC-MS [19]. Sub part per billion 

detection limits have been achieved using solid phase extraction previous to LC-ES-MS 

for a variety of compounds [20,21]. The concentrations of the solutions entering the LC-

ES-MS in these cases range from 1-30 ppb after the solid phase extraction step. 

Several other recent ES-MS studies are related to the present work. Mallet et al 

[22] reported preliminary results concerning ES-MS analysis of a mixture of hydroxy 

acids at lO'^M in a waste stream. Stronger signals were seen for carboxylate anions 

[M-H]" than for positive ions. Solutions containing just individual acids provided stronger 

ion signals for [M-H]' than mixtures. These workers concluded that capillary 

electrophoresis with ES-MS should prevent this signal suppression problem and also 

separate components at the same nominal m/z value, although no capillary electrophoresis 

ES-MS results were described. Finally, Murphy and co-workers [23,24] described ES-

MS of lipid hydroperoxides, keto acids, and polyhydroxy unsaturated fatty acids. These 

compounds readily produced carboxylate anions from methanol-water solutions at 
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concentrations of approximately 1 ppm without derivatization. Murphy's studies dealt 

primarily with determination of structure by collision-induced dissociation (CID) spectra. 

Because lEC is the method of choice for separating small aliphatic carboxylic 

acids [25], an lEC column was coupled with ES-MS in the present work. lEC offers the 

following desirable features: sensitivity, high capacity, and simplicity [26]. A strong 

anion or cation exchange resin, with a functional group attached to the surface, separates 

weakly ionized solutes. The charge of the functional group on the resin is the same as 

that of the partially ionized analyte. For carboxylic acids, the resin has sulfonate groups 

or other negative functional groups which repel negative ions. Anions of strong acids, 

such as HCl and H2SO4, are repelled by these functional groups and elute without 

retention. Neutral or partially ionized compounds can penetrate the negatively charged 

resin zone into the occluded liquid phase and are partitioned in this fashion [27,28]. This 

process is sometimes called the Donnan exclusion principle. 

In EEC of anions, the eluent is a dilute solution of strong acid which protonates 

some of the carboxylic acid molecules. In general, acids with higher pK, values are 

protonated more extensively and are retained longer on the column [27,28]. Hydrogen 

bonding and adsorption also affect retention time. In general, retention time increases 

with molecular weight [29]. 

The main intent of the present work is to develop rapid analytical methodology to 

determine small carboxylic acids that could be produced by electrochemical incineration 

of toxic organic wastes such as benzene and phenol [30]. Therefore, this study focusses 

mainly on the determination of formic acid, glyoxylic acid, oxalic acid, 2-



www.manaraa.com

20 

hydroxyisobutyric acid, and maleic acid. Some experiments were also done with succinic 

acid, 1-hexanoic acid, tricarballylic acid, and malonic acid. Detection limits were 

examined by direct infusion into an ES-MS and by joining lEC to ES-MS. This study 

also compares signal differences with methanol and 2-propanol as the solvent and with 

nitrogen and oxygen sheath gases for ES-MS. Straub and Voyksner reported variations 

in ion response of adenosine 5-monophosphate in different solvents with oxygen as a 

sheath gas [31]. Electrospray extraction conditions are examined, calibration curves, pH 

effects, and matrix interferences are discussed. Because chemical separation procedures 

for diacids are more time consuming than those for volatile monoprotic acids [6], a 

variety of compounds were tested. These acids are especially challenging for ES-MS 

because their m/z values are in the range m/z = 46 to 116 where background spectral 

peaks for solvent ions complicate the observed spectra. 

Experimental Section 

Reagents and samples 

Water was distilled and then deionized (18M0 cm"' at 25 °C) with a Bamstead 

Nanopure-n system (Newton MA). The mobile phase was 0.4 mM trifluoroacetic acid 

(TFA, Fisher Scientific, Fair Lawn, NJ) in water. Aqueous TFA at this concentration 

produced a pH of 3.5 after the LC column. Either methanol or 2-propanol (Fisher 

Scientific, Fair Lawn, NJ) and ammonium hydroxide (Malinckrodt, Paris, KY) were 

added post-column through an HPLC micropump to the sample stream to facilitate 

ionization of analyte, droplet formation and evaporation of eluent. The acids used were 
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obtained from the following suppliers: a) formic and oxalic (Fisher Scientific, Fair Lawn, 

NT); b) malic, malonic, tricarballylic, 2-hydroxyisobutyric, 1-hexanoic, succinic, and 

maleic (Aldrich, Milwaukee, WI); c) glyoxylic (Janssen Chimica, Geel, Belgium). A 

10,000 ppm stock solution of each carboxylic acid was prepared. Aliquots of stock 

solution were frozen separately to avoid sample decomposition. An aliquot of the stock 

solution was thawed and refrigerated for no more than 30 days, prior to use. For 

separations, a sample solution containing 50 ppm of each acid was prepared by diluting 

aliquots of the stock solutions with 0.4 mM TFA. Solutions with each individual analyte 

were also made by diluting aliquots with 0.4 mM TFA. All solutions were filtered to 

minimize plugging of the ES-MS orifice. The TFA eluent was filtered under vacuum 

with a Magna-R nylon membrane (0.22 fim pore diameter. Fisher). This filtration step 

also degassed the eluent. Sample solutions were filtered with Costar ^star filters (0.22 

^im pore size) directly before injection onto the column. 

EEC conditions 

The lEC system was composed of a micropump, a sample injector with a 50 /xL 

injection loop, and an ion exclusion column. The components and conditions for the 

separation are summarized in Table I. The acidic eluent used in lEC must have a pK, 

that is less than the pK, of the analyte acids for good separations [27,28]. The eluent 

must also evaporate easily in the ES-MS. Dilute solutions of strong inorganic acids like 

phosphoric acid and sulfuric acid are commonly used for lEC with absorbance detection. 

In our experience, these eluents produce complicated background spectra and greatly 

suppress signals from carboxylate anions in ES-MS. The weaker acid TFA at 0.4 mM 
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Table I. Chromatographic Components and Operating Conditions 

Pumps Dionex model APM-2 analytical pump (Sunnyvale, CA) 
Beckman model 112 micropump (Fullerton, CA) 

Injection Valve Rheodyne 7010 high pressure sample injector (Cotati, CA) 

Column Dionex lonPac IEC-AS6 ion exclusion column (Sunnyvale, CA) 

Stationary Phase Cross-linked styrene/acrylate/divinylbenzene functionalized 
with sulfonate and carboxylate 

Mobile Phase 0.4 mM trifluoroacetic acid in water 

Sample Flow Rate 400 fiL min"' 

Injection Volume 50 mL 

gave useful chromatographic separations and [M-H]" sensitivity without severe problems 

from background ions. The column was equilibrated with the mobile phase prior to use. 

ES-MS conditions 

An API/1 (Perkin-Elmer SCIEX, Thomhill ON, Canada) single quadrupole mass 

spectrometer was used. This apparatus uses a curtain gas interface (Fig. 1 inset) and has 

been described previously [32,33]. The lonSpray source was operated in the negative ion 

mode. Table n summarizes the instrumental operating conditions of the ES-MS. These 

conditions were kept fairly consistent, but a few parameters (marked by an asterisk in 

Table II) needed optimization from day to day. 
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Table n. ES-MS Operating Conditions 

Ionization Source 

Nebulizer Gas Pressure 

Nebulizer Gas Flow Rate 

Sample Flow Rate 

Curtain Gas Pressure 

Curtain Gas Flow Rate 

Curtain Gas Temperature 

Discharge Needle Voltage 

Interface Plate Voltage 

Orifice Plate Voltage 

RF Only Quadrupole Voltage 

Mass Analyzer Quadrupole Voltage 

CEM Detector Voltage 

Operating Pressure of Quadrupole Chamber 

Dwell Time 

m/z Values Monitored 

lonSpray (nebulizer assisted electrospray) 

40 psi, zero grade (99.998%) N2 

0.6 L min ' 

15 /iL min"' 

80 psi, carrier grade (99.999%) N2 

0.7 L min"' 

60°C 

-4000V* 

-450V* 

-120V* 

-lOOV* 

-95V* 

-I-2800V 

3.5 X lO-^Torr 

100 ms 

m/z=45 (formate) 
m/z=73 (glyoxylate) 
m/z=89 (oxalate) 
m/z =103 (2-hydroxyisobutyrate) 
m/z=115 (maleate) 

•Typical values cited. These parameters were adjusted daily to maximize 
ion signal and chromatographic quality, and differed slightly from day to day. 
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Operating conditions were optimized to provide maximum [M-H]" signal during 

infusion of simple solutions. These same conditions were also used when the lEC 

separations were employed. There was no obvious indication of interaction or 

cooperativity between the various experimental parameters. 

Apparatus 

The experimental set-up is shown in Figure 1. Eluent flows from the first HPLC 

pump through the colunm at 400 /xL min ' to a splitter. The ES-MS operates best with 

approximately a 15 /tL min * liquid flow rate, so the eluting flow from the column must 

be split before it enters the ES-MS. This split is accomplished using a T-connector with 

different lengths and diameters of capillary tubing arranged to deliver the desired 40:1 

split. The dimensions of these capillaries are indicated in Fig. 1. Approximately 390 ^tL 

min'* flow to a UV-visible absorbance detector (X=214 nm, Spectroflow 757, Kratos 

Analytical) through a 20 cm length of 200 ^m diameter PEEK tubing. A 20 cm length of 

200 nm diameter PEEK tubing then leads from the absorbance detector exit and is joined 

to another (100 ^m ID x 7 cm long) capillary, which is used as a flow constrictor. The 

capillary length of the flow constrictor is varied to deliver the appropriate 10 /xL min ' 

flow to a mixing union. The 10 fiL min ' flow is then mixed with pH-adjusted 2-

propanol (see below) at 5 /xL min ' from a second HPLC pump. The eluent/solvent 

solution leaves the mixing union as a 15 /iL min"' stream and enters the ES-MS source 

through a capillary. The capillary tube passes into the stainless steel electrospray needle 

and stops approximately 1 mm before the needle exit. The charge on the needle is 
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transferred to the sample, while a sheath gas sprays the solution as an aerosol out of the 

needle and into the vicinity of the sampling orifice of the mass spectrometer. 

The lEC separation uses an aqueous eluent, whereas the electrospray process 

prefers some organic solvent. Ammonium hydroxide is also added post-column to 

convert the carboxylic acids into anions, which improves the anion signal for 

electrospray. Strictly speaking, pH is an ambiguous term for mixed organic-aqueous 

solvents. The pH values cited below are those measured during optimization experiments 

using infusions after addition of aqueous NH4OH only to the aqueous lEC solvent. The 

2-propanol was then added after the pH measurement steps. During actual lEC 

separation, both 2-propanol and aqueous NH4OH were added post-column in a single 

liquid flow, hence the term "pH-adjusted propanol" used in the preceding paragraph. 

The 2-propanol was 33% of the total flow. 

Data acquisition 

For the separation of carboxylic acids, ions were measured at five m/z values by 

selected ion monitoring during the chromatographic separation. Compromise operating 

conditions were obtained using a standard solution containing all five acids and 

maximizing [M-H]" signal while peak hopping over all five m/z positions. 

Chromatograms were recorded in real time with PE Sciex Tune 2.4 software, stored on 

the hard disk, and later analyzed using PE Sciex Mac Spec 3.22 software. All spectral 

scans were collected by averaging 10 consecutive scans. Detection limits were calculated 

to be the concentration or mass of analyte necessary to produce a net signal equivalent to 

three times the standard deviation of the background. 
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Results and Discussion 

ES-MS extraction conditions 

The observed spectra are quite sensitive to ion extraction conditions [34,35,36]. 

The voltage difference between the orifice plate and the RF only quadrupole has the 

greatest effect on the observed ions. A large voltage difference here imparts a high 

kinetic energy to the ions, which then fragment extensively via collisions in the 

supersonic jet. With a small voltage difference, more clusters are observed. 

These effects are discussed below for two typical compounds: 1-hexanoic acid, 

which has one carboxyl group , and succinic acid, which has two. Figure 2 demonstrates 

the effect of changing extraction conditions for succinic acid. The voltage on the orifice 

plate is set at three different values: (a,b)-105V, (c,d)-120V, and (e,f)-140V, while the 

RF only quadrupole is kept at -lOOV. Figure 2a shows spectra obtained under mild 

collision conditions. The difference between the voltages on the orifice plate and the RF 

only quadrupole is only 5V. Most of the peaks at low m/z values are background ions 

from the TFA and propanol as shown also in Figure 2b. A low collision energy yields 

cluster ions like TFA • [TFA-H]' (m/z=227), succinate • TFA (m/z=231), and succinate 

• succinic acid (m/z=235). 

Figure 2c shows the succinate spectra observed under normal extraction 

conditions, and Figure 2d shows the accompanying background at these conditions. The 

voltage difference between the orifice plate and the RF only quadrupole is now increased 

to 20V. In the negative ion mode, under these conditions, the major ion observed is [M-

H]*. For succinic acid (MW= 118), the [M-H]' peak is observed at m/z= 117. (TFA-^^]• 
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is observed at m/z=113 from the eluent. Succinate yields a small peak at m/z=73 due 

to loss of CO2, and [TFA-H]' also loses CO2 to yield the peak at m/z=69. 

Figures 2e and 2f show the spectra obtained under harsh collision conditions with 

a difference of 40V between the orifice plate and the RF only quadrupole. Parent ions 

are less abundant and fragmentation is more extensive. 

Figure 3 shows the change in signal intensity for various ions from succinic acid 

as a function of the voltage difference discussed above. Again, this experiment is 

performed by varying the orifice plate voltage while holding all other conditions constant. 

Succinate is selected here to typify the general behavior of dicarboxylic acids. Line (a) 

in Fig. 3 shows the signal for the parent ion [M-H]' at m/z=117. The [M-H]" signal 

maximizes with a voltage difference of -5 to +25 V. Line (b) is the signal at m/z=73, 

the fragment ion CH3CH2COO' formed by the loss of COj, and line (c) is m/z=99, 

which is a fragment ion due to the loss of H2O. As the voltage difference becomes more 

than 20 to 25 V, these fragments become more abundant at the expense of signal for [M-

H]". The large voltage difference results in more energetic collisions during extraction, 

which produce more fragment ions. A voltage difference of 25 V (i.e., orifice voltage of 

-125 V) is sufficient to dissociate the clusters at m/z=231 and 235, as described above. 

The loss of CO2 and H2O upon CID is expected with anions from dicarboxylic 

acids [23]. Succinate, for example, has one carboxyl group to contain the negative 

charge while the other carboxyl group splits off as CO2. The resulting fragment ion at 

m/z=73 is the major ion observed with harsh extraction conditions, as shown in Figure 

2e. Parent ions with only one carboxyl group do not exhibit the same fragmentation 
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properties. 1-Hexanoic acid (MW = 116) produces a parent ion [M-H]' at m/z= 115 but 

shows no fragment ions for the loss of CO2 or H2O at either m/z=71 or 97. Figure 4 

shows that the 1-hexanoate parent ion remains the major ion observed at the same harsh 

conditions as in Figure 2e. No fragment ions are observed because, if the carboxylate 

group is lost, no other functional group remains to contain the negative charge. 

Variation of the extraction conditions can provide interesting information about the 

clustering and declustering properties of a compound, i.e., whether the compound loses 

H2O or CO2. However, excessive formation of firagments and clusters complicates the 

spectra and adversely affects detection limits. For this study, conditions similar to those 

in Figure 2c were chosen to give the negative parent ion [M-H]' as the major sample ion, 

which provides the best detection limits and reasonably simple spectra. 

pH en'ects 

The effects of pH on the generation of analyte ions were studied. The eluent must 

be acidic for good separation in the lEC column, but a basic solvent is desirable for 

production of negative ions from the weak acids. Thus, the pH of the ES-MS sample 

must be adjusted after the chromatographic separation. 

The signals for each of five carboxylate anions were monitored during 

chromatographic separations with the pH adjusted to either 4 or 9 after the column and 

before the MS. The reader should note that these pH values were measured separately 

only for the aqueous component of the total flow. 2-propanol was added at 33% of after 

the pH adjustment to enhance the spray properties. 
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The results are shown in Figures 5 and 6. Of these 5 compounds, only oxalic 

acid (pKi = 1.04) and maleic acid (pKi = 1.75) yield useful signal at pH=4.0 (Fig. 5). 

They are relatively strong acids and have pK, values well under the nominal pH of the 

solution. More basic conditions (pH=9.0, Fig. 6) improve the [M-H]" response for 

glyoxylic (pK,=3.30), formic (pK,=3.55), and 2-hydroxyisobutyric acid (pK,=3.72), but 

the sensitivity for [M-H]' from maleate falls to only about 33% of that at pH=4.0. Thus, 

a compromise is required in the pH value used to produce anions of these compounds by 

electrospray. 

Calibration curves were also measured for each solvent at pH=4 and pH=9. The 

majority of these carboxylic acids gave similar and fairly straight (r^« 0.995) calibration 

curves up to 10 ppm, but formic acid at pH=9 gave a better curve than at pH=4, as 

shown in Figure 7. Thus pH=9 was selected to provide reasonable linearity and signal 

response for a wider range of carboxylic acids than was the case at pH=4.0. 

Solvent and sheath gas effects 

The solvent and sheath gas can affect the signal intensity and stability of the 

electrospray current [31,39]. A proper solvent suppresses electrical discharge and 

evaporates easily from the analyte ions. In this study the solvent, either methanol or 2-

propanol, was added to the analyte flow after elution from the column with either 

nitrogen or oxygen as a sheath gas. 

The solvent and sheath gas effects were examined either with all other 

experimental conditions held constant or with specific optimization for each solvent/gas 

combination. In each case, a solution containing the five carboxylic acids (oxalic. 
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maleic, glyoxylic, formic, 2-hydroxyisobutyric acids) at pH=9.0 was studied. While Oj 

sheath gas yields the lowest background signal, Nj produces [M-H]' signals that are 

higher by a factor of 2, At pH=9.0, 2-propanol gives higher signal than methanol 

regardless of sheath gas used. This latter effect is also shown in Figure 7. Thus, 2-

propanol solvent and N2 sheath gas was the best combination. The reasons why 2-

propanol and Nj work better than methanol and O2 are not clear. 

Detection limits 

The detection limits observed for both direct infusion of sample into the ES-MS 

and for EEC-ES-MS under these conditions are shown in Table in. The detection limits 

for direct infusion range from 40 to 200 ppb, while lEC-ES-MS detection limits are 

between 2 and 8 ppm. The poorer detection limits with the lEC separation can be 

attributed to the large 40:1 split of the sample before the ES-MS. These detection limits 

were obtained by selected ion monitoring for the parent anions of each of the five acids 

shown in Table HI. Naturally, the detection limits would be worse if more m/z values 

Table m. Detection Limits for Carboxylic Acids 

Infused (no split) lEC (40:1 split) 
Sample ppb pg ppm pg 

Formate 80 20 3 800 
Glyoxylate 200 50 8 2000 
Oxalate 80 20 3 800 
HIBA 80 20 3 800 
Maleate 40 10 2 500 
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are included in the selected ion monitoring program or if the mass analyzer is scanned to 

observe unknown acids at other m/z values. 

Matrix effects 

In ES-MS, the presence of concentrated matrix ions in the sample can change the 

analyte signal significantly [40,41]. Citrate, a carboxylate compound in citrus fruits, was 

selected to study these possible matrix effects. Figures 8a and 8b show malonate 

(m/z =103) and tricarballylate (m/z =175) signals respectively, as citric acid concentration 

is increased. In each case, the malonic and tricarballylic acids are present at 100 ppm, in 

a 33% 2-propanol solution at pH=9.0. Ion signals for both malonate (Fig. 8a) and 

tricarballylate (Fig. 8b) decrease greaUy (approximately 10 fold) as citric acid 

concentration is increased to 5000 ppm. 

The ratio of (malonate signal)/(tricarballylate signal) is plotted as a function of 

citrate concentration in Fig. 9. Note that the vertical scale is much more sensitive than 

that in Fig. 8. This signal ratio decreases by about 25% as the citrate concentration 

increases. From 1000 ppm to 5000 ppm citric acid, the analyte signal ratio changes by 

only about 10%. Thus, the signals from these two anions, malonate and tricarballylate, 

are suppressed to about the same extent by the citrate matrix, so they could readily serve 

as internal standard pairs. 

This internal standardization scheme does not necessarily work well for all pairs 

of carboxylate anions, however. Malate was also added to these solutions as a potential 

internal standard. The ratios (analyte signal)/(malate signal) varied by some 75% as 

citric acid concentration increased up to 5000 ppm. Thus, a potential internal standard 
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compound must be evaluated on a case-by-case basis for the particular analytes of 

interest. Naturally, an isotopically-labeled analog of the analyte would be expected to be 

the most appropriate internal standard. Otherwise, it is apparent that an internal 

standard can not eliminate matrix effects, so the lEC separation is still needed. The 

signal from an analyte that is well separated from eluting matrix compounds should not 

be suppressed by the matrix. If an analyte elutes relatively close to a matrix compound, 

that analyte ion signal experiences suppression. An internal standard can be used in this 

case to minimize the matrix effect observed. For ES-MS using lEC with a make-up 

solvent flow, the internal standard can be added to the solvent make-up flow. The 

internal standard added to the solvent flow will not be subject to chromatographic 

separation, but will experience the same matrix effect and declustering conditions as the 

analyte ion in the ES-MS. 

Conclusions 

The analytical merits of lEC-ES-MS have been demonstrated. A difficult 

carboxylic acid mixture has been separated. Detection limits of 40 to 200 ppb for direct 

infusion and between 2 and 8 ppm for lEC-ES-MS were observed. It may be possible to 

improve the lEC-ES-MS detection limits by using "turbo ion spray", i.e. a heated gas 

flow near the electrospray needle that allows large liquid flow rates (up to 1 ml/min) to 

be introduced to the ES-MS. lEC-ES-MS should be useful to separate and identify weak 

carboxylic acids in moderately complex solutions, such as those produced by 

electrochemical degradation of organic wastes. 
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Figure 2. Effect of extraction voltages on spectra from 10 
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CHAPTER 3. ELECTROCHEMICAL INCINERATION OF BENZOQUINONE IN 
AQUEOUS MEDIA USING A QUATERNARY METAL OXIDE ELECTRODE IN 

THE ABSENCE OF A SOLUBLE SUPPORTING ELECTROLYTE 

A paper accepted for publication in Journal of Applied Electrochemistry 

Steve K. Johnson, Linda L. Houk, Jianren Feng, R. S. Houk, Dennis C. Johnson' 

Abstract 

Electrochemical incineration of />-benzoquinone was evaluated as a model for the 

mineralization of carbon in toxic aromatic compounds. A Ti or Ft anode was coated with 

a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; 

elemental analysis of the electrolyzed solution indicated the concentration of these metal 

ions to be 3 ^g/L or less. The anode showed good reactivity for the electrochemical 

incineration of benzoquinone. The use of a dissolved salt matrix as the so-called 

"supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched 

between the anode and cathode. This substitution permitted the electrolysis solution to be 

analyzed by electrospray-mass spectrometry (ES-MS); however, as a consequence, 

electrolysis periods were excessively long. Total organic carbon (TOC) and chemical 

oxygen demand (COD) decreased to 1 - 2 mg/L after 64 hours of electrolysis. The 

solution pH changed from 5 to 4. Phenolic and carboxylic acid intermediate products 

such as hydroquinone, maleic acid, fumaric acid, succinic acid, malonic acid, acetic acid 

and formic acids were identified and quantified using solid phase micro-extraction with 

gas chromatography with mass spectrometric detection (GC-MS) or liquid 

'Author for correspondence 
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chromatography (LC) with conductivity detection, absorbance detection, or electrospray 

mass spectrometry (ES-MS). Less than 1% of the carbon in benzoquinone was converted 

to acetone and acetaldehyde. 

Introduction 

Public awareness of the discharge of industrial wastes has resulted in 

governmental and private development of efficient, economical and safe procedures for 

the destruction of toxic organic waste. Alternatives to the traditional use of thermal 

incineration include supercritical water oxidation, photochemical degradation, 

sonochemical oxidation and electrochemical incineration. 

Supercritical water oxidation is performed above the critical point of water (374 

°C, 218 atm) in the presence of Oj or HjOj [1]. Organic species only slightly soluble in 

water are miscible with supercritical water [2]. The literature contains descriptions of 

reaction mechanisms, kinetics and engineering aspects of supercritical water oxidation 

applied to numerous organic pollutants including: phenol [3-6], l,3-dichloroben2ene and 

benzene [6], pyridine [2,7], acetic acid [2,8], 1,4-dichlorobenzene [9], chlorophenols [2], 

pulp and paper mill sludge [1], and explosives [10]. Major reaction products are water, 

carbon dioxide and inorganic salts. Supercritical water oxidation is well suited for 

destruction of large volumes of toxic organic waste; however, for disposal of small 

quantities of toxic organic waste, supercritical water oxidation is not considered feasible 

economically. Therefore, evaluation of less costly methods is appropriate. 

Recently, interest in photochemical degradation of toxic organic waste in aqueous media 
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has expanded rapidly. The primary oxidant is the photogenerated hydroxyl radical 

formed on semiconductor metal oxide surfaces [11]. Typically, Ti02 powder is the 

semiconductor used because it is inexpensive, insoluble under conditions used in 

photochemical degradation, stable and non-toxic [12]. The literature of photochemical 

degradation describes applications to chlorophenols, dichloroacetate and oxalate [13], 4-

chlorophenol [14-17], humic acids [11], dichlorophenols [18], benzene [19], phenol [20], 

dimethoxybenzene [21] and toluene [22]. Applications of photochemical degradation 

appear most suitable for solutions having low turbidity [23]. 

Sonochemical oxidation has been used for degradation of phenol [23] and humic 

acids [24]; and of 4-chlorophenol, 3,4-dichloroaniline and 2,4,6-trinitrotoluene [25]. The 

primary reaction in sonochemical oxidation is the pyrolysis of solute present in bubbles 

generated by acoustical cavitation. Secondary reactions also occur as a result of 

interactions of solute with hydroxyl radicals and hydrogen atoms produced by the 

sonication of water [23]. 

Electrochemical incineration is an alternative to the degradation methods just 

described. This is a waste remediation process whereby oxygen atoms are transferred 

from H2O in the solvent phase to the oxidation product(s) by direct or indirect reactions 

on the anode surface. This procedure is attractive for low-volume applications such as 

confined living spaces, e.g., spacecraft, and research laboratories. Kaba et al. described 

successful electrochemical incineration of waste biomass using Pt and PbOj electrodes 

[26]. They reported the major advantages of electrochemical incineration over thermal 

incineration include; absence of CO and NO^ generation, and low operating temperatures. 
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Because of the high cost of Pt and the toxicity of lead salts, Kotz et al. [27], and 

Comninellis and Pulgarin [28], compared PbOj and Pt electrodes to Sn02-film electrodes 

doped with Sb(V) ("Sb-SnOj"). Both Swiss groups demonstrated that phenol is removed 

from aqueous solution more efficiently with Sb-SnOz anodes than with Pt and PbOz 

anodes. Their work also indicated that for Pt anodes, oxidation stops with the formation 

of small carboxylic acids, e.g., maleic, fiimaric and oxalic. More recently, Comninellis 

and Battisti [29] compared Pt, IrOz/Ti, and Sb-SnOa/Ti anodes and proposed a 

mechanism for the electrolysis of organic compounds. These and other descriptions of 

electrochemical incineration literature are reviewed by Rajeshwar et al. [30]. Advantages 

of electrochemical incineration discussed by Rajeshwar et al. include: versatility, energy 

efficiency, amenability to automation, environmental compatibility and low cost. 

The major challenge for future development of electrochemical incineration is the 

discovery of nontoxic anode materials and electrolysis conditions that can achieve 

conversion of toxic organic waste to innocuous products with high current efficiencies. 

Other desirable electrode properties include low cost, lack of toxicity, high stability and 

high activity. The matter of current efficiency is especially pertinent because the desired 

O-transfer reactions require the anodic discharge of H2O to produce adsorbed hydroxyl 

radicals (OH^. However, a high surface excess of the OH^ species leads to evolution 

of O2, an undesired product. Previous work in this laboratory has demonstrated that 

electrodes comprised of Fe(III)-doped /3-Pb02 films on Ti substrates ("Fe-Pb02/Ti") are 

quite stable in acetate buffered media (pH 5) and offer significantly improved catalytic 

activity over pure /3-Pb02 film electrodes for conversion of CN® to CNO® under 
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potentiostatic conditions [31] as well as the anodic degradation of p-benzoquinone under 

galvanostatic conditions [32]. 

The present focus of our research related to electrochemical incineration is 

directed away from the use of a PbOz film electrode to a quaternary metal oxide 

consisting of a SnOz film doped with varying amounts of the oxides of antimony, titanium 

and ruthenium. The cathode is a porous stainless steel cylinder. In this study, a Nafion 

membrane is used as a solid-state electrolyte sandwiched between the anode and cathode. 

Use of Nafion, a perfluorinated membrane, precludes the need for addition of soluble 

inorganic salts to fiinction as supporting electrolytes. A dramatic increase in lifetime of 

the anodes has been observed to result from omission of added electrolytes. 

Furthermore, the low ionic strength of the electrolysis solution facilitates the use of ES-

MS for determination of ionic products and there is little or no electrolyte to remove 

from the remediated solution. 

Experimental Section 

Reagents and samples 

All chemicals were reagent grade (Fisher Scientific) and water was purified in a 

Nanopure-U system (Bamstead, Newton, MA). Quaternary metal oxide films were 

prepared from a solution comprised of 0.4 M SnCl2 • 2H2O, 0.03 M SbCla, 0.08 M 

RuCls and 0.02 M TiCl4 in a 1:1 mixture of 12 M HCI and /-propanol. This composition 

was chosen on the basis of patents claiming high stability for Ti02-Ru02-Sn02 [33] and 

Ru02-Sb203-Sn02 [34] films on Ti substrates in saline solutions. p-Benzoquinone (Fisher 
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Scientific) was purified by sublimation and used for preparation of 100 mg/L stock 

solutions in water. Carboxylic acids (Aldrich) were dissolved in water to prepare 1000 

mg/L standard stock solutions, which were then frozen until needed to prevent microbial 

degradation. 

Electrolysis apparatus 

Quaternary metal oxide films were prepared by a thermal procedure in which Ti 

or Pt substrates were alternately painted with the solution of the four metal salts followed 

by heating above the flame of a Bunsen burner for ca. 15 s. After ten wetting-heating 

cycles, the electrode was annealed in a muffle fiimace for 1 h at 600°C. The resulting 

quaternary metal oxide films on Ti and Pt substrates are designated here as "Ru-Ti-Sb-

Sn02/Ti" and "Ru-Ti-Sb-Sn02/Pt", respectively. Preliminary work made use of a Ti 

substrate (10 cm^ working area), in the form of a rectangular plate, and a Pt cathode. 

Subsequently, a Pt wire (0.62-mm o.d., 24-cm length, 4.7-cm^ working area) was used as 

the substrate for quaternary metal oxide films. In the latter case, a rectangular piece of 

Nafion 117 membrane (2 cm x 4 cm) was placed around the cathode and wrapped tightly 

with the quaternary metal oxide-coated wire anode, as shown in Fig. 1. The cathode was 

prepared from a rod of type-360 stainless steel (6.4-mm o.d. and 3.5-cm length) drilled 

with 20 holes (3-mm dia.) positioned normal to the axis of the rod. Other anodes include 

those described by Feng et al. [31,32]. 

The electrolysis cell was assembled from a 50-mL three-necked pyrex flask. 

Teflon stoppers were machined to fit the outer two ports of the cell. One stopper allowed 

entry of the electrode assembly. The other stopper allowed passage of a hypodermic 
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needle to add water or introduce a solid phase microextraction fiber for headspace 

analysis. A tapwater-cooled condenser was inserted in the center neck of the cell to 

decrease evaporative water loss during long electrolysis periods. All glassware was 

washed in 1 M KOH in a 1:1 niixture of ethanol and water, then in 2 M H2SO4, then 

rinsed with water and then dried overnight at 1(X)°C. The power supply was a 

potentiostat/galvanostat (model 363, EG&G Princeton Applied Research, Princeton, NJ) 

operated in the galvanostatic mode. 

Electrolyses 

Electrolyses were performed under galvanostatic control at 1.0 A (ca. 0.2 A/cm^) 

on 50-mL aliquots of benzoquinone stock solution. At the conclusion of each 

electrolysis, deionized water was added to bring the volume in the cell back to 50 mL, 

i.e., the starting volume. 

Surface characterization 

Micrographs and elemental analyses of the electrodes were obtained using a 

Hitachi S-246N scanning electron microscope (SEM, Mountain View, CA) equipped with 

a LINK ISIS energy dispersive X-ray spectrometer (EDS, Oxford). The response for the 

analyte elements was calibrated by the ZAF procedure with matrix effects corrections, as 

provided by the manufacturer. 

Chemical analyses 

The elemental content of the initial benzoquinone solution and one that had been 

electrolyzed for 64 h was determined by inductively coupled plasma-mass spectrometry 

(ICP-MS). The apparatus and typical operating conditions have been described by Hu et 
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al. [35]. A semiquantitative analysis mode was used for calibration. Spectral scans were 

measured in separate m/z windows typically 50 daltons wide. Analyte signals were 

adjusted for blank signal, isotopic abundance and approximate degree of ionization [36] 

and then compared to those for known concentrations of Co, La or Tl, whichever was in 

the particular m/z window of interest. Scans of the full m/z range showed that matrix 

effects were negligible. 

In addition to the starting solution, samples representing eight electrolysis periods 

in the range 0.5 - 64 h were analyzed for TOC, COD, pH, and inorganic and organic 

anions. TOC was determined at the University of Iowa's Hygienic Laboratory, which is 

EPA approved. Samples were analyzed by a DC 190 TOC Analyzer (Dohrmann, Santa 

Clara, CA) using a combustion infrared method. COD was determined by titration with 

KMn04 as described by Feng et al. [32] or by a Hach DR2000 analyzer (Loveland, CO). 

Quinone and phenolic compounds were separated with a reverse phase Zorbax 

SBC18 column (25-cm length, 4.6-mm dia.) developed by Rockland Technologies 

(Chadds Ford, PA) and detected by absorption at 240-nm using a Kratos Analytical 

Spectroflow photometer (Ramsey, NJ) or with a Perkin-Elmer SCIEX API/1 ES-MS 

(Thomhill ON, Canada) based on a single quadrupole mass spectrometer. The ES-MS 

was equipped with a Perkin-Elmer SCIEX TurboIonSpray heating probe (Thomhill ON, 

Canada). The TurboIonSpray employs a heated gas flow near the electrospray needle 

which increases evaporation of solvent and allows liquid flow rates up to 1 mL/min. 

TurboIonSpray eliminates the need to split the eluent stream from the HPLC, eliminates 

some background peaks, improves detection limits where background peaks are 
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eliminated, and allows use of low organic solvent levels. Methanol and water at a 1:1 

ratio was the eluent used at a flow rate of 0.3 mL/min. In addition, inorganic and 

organic anions in the electrolysis solutions were monitored by direct infusion into the ES-

MS. Carboxylic acids were identified using an ICE-AS6 ion-exclusion column from 

Dionex (Sunnyvale, CA) coupled to ES-MS as described by Johnson et al. [37]. 

The inorganic and organic anions were quantified using an ASH anion- exchange 

column with an ED40 conductivity detector from Dionex. A sodium hydroxide and 

methanol gradient elution program as described in the literature accompanying the column 

provided the needed separation of the analytes of interest. 

Polyacrylate and carbowax-divinylbenzene coated SPME fibers from Supelco 

(Bellefonte, PA) were used to extract constituents in the benzoquinone solution and in the 

headspace. Solid phase microextraction fibers underwent thermal desorption in a Varian 

3400 gas chromatograph (Palo Alto, CA) equipped with a DB-1 or DB-5 column from 

J&W Scientific (Folsom, CA), and coupled to a Finnigan TSQ-700 triple quadrupole 

mass spectrometer (San Jose, CA). 

Aldehydes and ketones were collected with Sep-Pak (DNPH-Silica) cartridges 

manufactured by Waters Chromatography (Marlborough, MA). The HPLC analysis of 

the eluent in the Sep-Pak cartridges was performed as described in the manufacturer's 

instructions accompanying the cartridges. 
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Results and Discussions 

Comparison of electrode materials 

Table I presents a comparison of the performance of seven electrode materials 

applied for anodic degradation of benzoquinone in acetate buffer. Included are values of 

COD following electrolysis for specified time periods and brief comments pertaining to 

the electrolysis solution or the electrode surfaces. The COD in these solutions was 

determined by titration with standard KMn04, a procedure that ignores contribution from 

the acetate/acetic acid components. The Au anode was least effective, requiring 48 h to 

decrease the COD to 582 mg/mL, i.e., a 46% decrease from the original value. The 

Ru/Ti anode was slightly more effective than Au with a COD of 28 mg/L after 48 h. 

The PbOz/Ti anode decreased the COD to 12 mg/L after 24 h; however, the Fe-PbOj/Ti 

anode decreased the COD to 8 mg/L after only 10 h. The Ru-Ti-Sb-Sn02/Ti anode was 

somewhat less efficient than the Fe-PbOz/Ti anode, producing a COD of 6 mg/L after 24 

h. The glassy carbon anode exhibited significant degradation within 10 h and 

corrosion of the Ti surface in the Sb-Sn02/Ti anode was observed after only 0.5 h. 

Comments are frequently offered by environmentalists that use of toxic lead-based 

anodes is not acceptable for electrochemical incineration applied to potable waters. 

Therefore, even though Ru-Ti-Sb-SnOi/Ti anodes were slower to oxidize benzoquinone 

than Fe-Pb02 anodes, the former was chosen for further evaluation in this project. 

Quaternary metal oxide films corroded slowly when operated at large current 

densities (> lOO mA/cm^) and ambient temperatures (25 - 35 °C). The U-tube shape of 

the Ru-Ti-Sb-Sn02/Ti anode permitted circulation of thermostated water. With this 
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Table 1. Electrode Materials Comparison 

Electrode 

(10 cm^) 

Current 

(mA/cm^) 

Time 

(h) 

COD* 

(mg/L) 

Observations 

None n.a. 0 1071 Brown-black solution. 

Au 10 48 582 Deep yellow solution. 

Ru/Ti 10 48 28 Yellow solution. 

Glassy carbon 10 10 - Carbon particles 

suspended in solution. 

PbOj/Ti 10 24 12 Colorless solution. 

Fe-PbO^/Ti 10 10 8 Colorless solution. 

Sb-Sn02/Ti 10 0.5 - Apparent corrosion 

of Ti substrate. 

Ru-Ti-Sb-SnOz/Ti 10 24 6 Colorless solution. 

•COD determined by titration with KM n04. 

electrode, the quaternary metal oxide films exhibited less corrosion when operated at 

higher temperature. Typically, corrosive losses were not visible nor detectable by 

gravimetry following 70-h electrolysis periods when the Ru-Ti-Sb-SnOj/Ti tubular anode 

were operated at 200 mA/cm^ and 60 °C. The observed benefit from a higher operating 

temperature is not understood; however, it is known that increased temperature increases 

the rate of water discharge and, therefore, causes the anode potential to be decreased 
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Morphology and elemental composition of quaternary metal oxide film 

A freshly prepared quaternary metal oxide film on Ti that had not been used for 

electrolysis was examined by scanning electron microscopy. The micrograph (not shown) 

indicated a moderately uniform film corresponding to an aggregation of small crystallites 

with individual diameters <2 fim. The results of energy dispersive spectroscopy for this 

surface confirmed the presence of Sb, Ru, Ti and Sn. An elemental analysis of two 

different regions of the electrode surface yielded the following percent compositions: Sb 

= 7 and 8%, Ru = 9 and 9%, Ti = 10 and 21%, and Sn = 34 and 39%. In 

comparison, the relative concentrations of metallic components of the solution used for 

thermal preparation of quaternary metal oxide films were: Sb = 6%, Ru = 14%, Ti = 

3% and Sn = 77%. 

Performance of the solid-state electrolyte 

The Nafion membrane eliminated the need for added soluble salts to serve as 

supporting electrolytes, which facilitated direct analysis of product solutions using ES-

MS. These analyses can only be performed on solutions of low ionic strength to prevent 

build-up of salt deposits that plug the orifice cone in the ES-MS. The Nafion 117 

membrane also prevented film formation on the anode surfaces during electrochemical 

incineration of 10 mM benzoquinone solutions over periods of several weeks. 

Comninellis and Pulgarin reported formation of organic films on Pt electrodes applied for 

anodic degradation of phenol and stated that film formation was exacerbated by high pH, 

low current density, high temperature and high phenol concentrations [39], Similar 

problems of film formation with loss of electrode activity have been encountered in this 
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laboratory during amperometric detection of phenol at Pt electrodes [40] and electrolysis 

of benzoquinone at Pt (unpublished). 

Construction of electrolysis cells using a solid-state electrolyte required that the 

membrane be sandwiched tightly between porous anode and cathode materials [41]. 

Undoubtedly, for applications to solutions having zero ionic strength, i.e., very low 

conductivity, electrolysis occurred only on those small portions of the electrode surfaces 

that were in simultaneous contact with solution and membrane. The result was a severely 

attenuated working area of the electrodes with a corresponding increase in the effective 

current density. We observed cell voltages > 10 V as compared to <5 V for the 

presence of acetate buffer (pH 5). 

Whereas this loss of effective electrode area, with a resulting increase in cell 

voltage, is seen as a disadvantage of this cell design, it is probably the explanation for the 

absence of organic film build-up on our anode surfaces. The higher effective current 

density resulted in an elevated rate of HjO discharge at the working portions of the anode 

with a corresponding large flux density for OH radicals that are believed to be the source 

of O-atoms transferred to the product(s) of the electrochemical incineration reaction(s). 

Therefore, the lifetime of organic radicals was greatly diminished with the beneficial 

decrease (or elimination) of radical polymerization to form surface films. The smell of 

03(g) also was detected above the electrode assemblies constructed with the Nafion 

membranes. This can be expected when high current densities are applied at noble 

electrodes [42]. It is not known to what extent the evolution of some O3 assists in 

promoting the desired electrochemical incineration. 
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A disadvantage of using the solid-state electrolyte in place of added soluble 

electrolyte was a significant increase in the electrolysis time needed to decrease COD 

values to specified levels. For example, addition of 0.1 M acetate buffer (pH 5) to our 

cell resulted in a ca. 50% decrease in time required to achieve >90% decrease in COD. 

COD, TOC, and pH results 

Figure 2 contains plots showing the change in COD and pH as a function of 

electrolysis time during the electrochemical incineration of a solution containing 100 

mg/L benzoquinone. Values for COD, obtained with the Hach DR2000, steadily 

decreased from an initial value of 190 mg/L to 2 mg/L during a 64-h electrolysis period. 

Values of TOC (not shown) decreased to 1.2 mg/L during this same period. The pH of 

the electrolysis solution decreased sharply to a minimum of ca. 3 at 2 h followed by a 

gradual increase to a final value of ca. 4. Whereas the rate of COj evolution is 

maximum immediately following the onset of electrolysis, ionization of the resulting 

H2CO3 (pK^i = 6.3) is not sufficiently strong to explain the sharp drop in pH. The most 

probable explanation is the formation of carboxylic acids by the first steps in 

benzoquinone degradation. Comninellis and Pulgarin reported the presence of maleic, 

fumaric and oxalic acids following electrolysis of phenol solutions [28,39]. 

Dissolved products of benzoquinone solutions 

Benzoquinone is very reactive in water and undergoes condensation reactions. 

The identity of these condensation products is highly dependent upon starting 

concentration and pH [43]. Products include dibenzofuran, biphenols, a trimer of 

molecular weight (MW) 290, plus a higher MW polymer. Condensation occurs rapidly 
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in alkaline media but only slowly in neutral and acidic media. Following addition of 

benzoquinone to pure water, the color of the solution changes from light yellow to a tea 

color within 72 hrs and to coffee brown within one week. Because a similar color 

transition is observed during the initial phase of the electrochemical incineration of 

benzoquinone, an attempt was made to look for the compounds named above. None of 

these compounds was detected using a solid phase microextraction fiber in combination 

with GC-MS for a 10 mM benzoquinone solution. 

In the electrolysis solutions (100 mg/L benzoquinone), only hydroquinone and 

resorcinol were detected on the solid phase microextraction fibers even though the 

sensitivity for phenols was increased by derivatization with acetic anhydride. 

Derivatization was not performed on the 10 mM benzoquinone solution. Results obtained 

using the polyacrylate fiber during electrolysis were consistent with the presence of 

hydroquinone and resorcinol following 0.5, 1 and 2 h. At 4 h, hydroquinone was not 

detected and at 8 h, resorcinol was not detected. 

ES-MS was also used to look for dibenzofuran, biphenols and other phenolic 

compounds. Although ES-MS could detect these compounds in standard solutions, 

dibenzofuran and biphenols were not observed before or during the electrolysis of 

solutions containing 100 mg/L or 10 mM benzoquinone. However, phenol was detected 

in a stock solution of week old 10 mM benzoquinone that had not undergone electrolysis. 

ES-MS identified p-benzoquinone and hydroquinone in electrolysis 

solutions at 4 h. Chromatograms are compared in Figure 3 for a benzoquinone solution 

after 1 h of electrolysis (A) and a standard solution (B). In addition to the standards 
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shown in the chromatogiam, selected ion monitoring was used to look for 2-

hydroxybenzoquinone. Kurien and Robins [44] reported that benzoquinone in dilute 

aqueous solution was converted to hydroquinone and 2-hydroxybenzoquinone via a 

benzene-1,2,4-triol intermediate product. A peak was not seen in the chromatogram for 

2-hydroxybenzoquinone but a signal was obtained at m/z = 123 whenever benzoquinone 

or hydroquinone were eluted from the column. 2-Hydroxybenzoquinone was not 

commercially available and was too unstable to be synthesized and stored. However, 

2,5-dihydroxybenzoquinone was detected by ES-MS. 

Because resorcinol was detected in the electrolysis sample by the solid phase 

microextraction method but not when using ES-MS, resorcinol might have formed in the 

sample preparation step of the microextraction method. A high pH was required for the 

derivatization with acetic anhydride and benzoquinone is very reactive under these 

conditions. Another possible explanation is that the solid phase microextraction method 

was more sensitive to resorcinol than LC-ES-MS. 

The Zorbax SBC 18 HPLC column works well for the separation of phenols in 

conjunction with ES-MS. One method of separating phenols is ion suppression 

chromatography which uses a phosphate buffer (pH 4) to suppress ionization. Phosphate 

buffers are known to suppress the ES-MS signal, as discussed by Johnson ei al. [37]. 

Methanol and water are commonly used as a solvent for ES-MS analyses; fortunately the 

SBC 18 column retained the phenols with only this eluent. Because detection limits 

improve as colunm diameter decreases, the use of a SBC18 column (3-mm i.d.) was 

tested to improve the sensitivity of the analytical technique. However, resolution between 
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hydroquinone and its isomers was lost unless trifluoroacetic acid was added to the eluent 

at such a high concentration that signal suppression occurred in the ES-MS. Detection 

limits for HPLC-ES-MS of phenols were as follows: hydroquinone and benzoquinone = 

100 /ig/L, phenol and 2,5-dihydroxyben2oquinone = 300 ;ig/L, and resorcinol and 

pyrocatechol = 50 /tg/L. When the same chromatographic conditions were coupled to an 

absorbance detector, the limits of detection for all six compounds were ca. 20 ^tg/L. 

Table 2 shows the acidic intermediate products detected during the electrochemical 

incineration of 100 mg/L benzoquinone. The major identified intermediate products were 

formic, acetic, maleic, succinic and malonic acids. Maleic acid concentrations peaked at 

2 h and, by 8 h, had decreased to <500 The presence of succinic, malonic, acetic 

and formic acids persisted after 32 h of electrolysis. Fumaric acid was detected in the 

first 4 h of electrolysis; however, concentrations were always less than 500 /xg/L. The 

inorganic anions chloride and sulfate were present as impurities in the starting solution (1 

mg/L). As a result of the anodic oxidation of chloride, chlorate was found in most 

electrolysis solutions at low levels (ca. 500 fig/L). Because the detection limit for 

perchlorate was ca. 5 mg/L with the anion-exchange column, it could not be detected 

with the conductivity detector. However, perchlorate was detectable by ES-MS in all 

samples after ca. 4 h at concentrations estimated to be <5 mg/L. 

It was not possible to identify all of the ions detected by direct infusion of the 

sample into the ES-MS. Because of the numerous reactions occurring in the electrolysis 

solution and fragmentation and clustering occurring in the electrospray ionization process, 
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Table 2. Acidic Intermediates 

Compound Peak Concentration 

(mg/L) 

Electrolysis Time 

(h) 

p-Hydroquinone 1 1 

Formic acid 5 0.5 

Fumaric acid <1 0.5 

Maleic acid 9 2 

Malonic acid 1 8, 16 

Succinic acid 10 8 

Acetic acid 8 64 

the interpretation of these data was difficult and necessitated the coupling of the ES-MS 

with LC. 

A Dionex ASH anion-exchange column with a conductivity detector was used to 

quantify the anions listed in Table 2. Fifteen peaks were detected and a typical 

chromatogram is shown in Figure 4. Because more peaks could be detected with the 

anion exchange column than with the ion exclusion column using ES-MS detection, the 

identities of all peaks shown in Figure 4 have not been established. The anion-exchange 

column could not be coupled with ES-MS because the sodium hydroxide eluent was not 
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acid, malonic acid, maleic acid, fumaric acid and sulfate were identified. Fumaric acid 

was quantified using LC with absorbance detection. 

Figure 5 compares remediation rates for four compounds generated during 

electrochemical incineration of benzoquinone. Whereas benzoquinone and maleic acid 

quickly undergo a redox reaction in the electrolysis solution, succinic and acetic acids 

were only slowly oxidized by electrochemical incineration. At 64 h, acetic acid was the 

only significant organic compound remaining in solution. Malonic acid levels were never 

higher than 1 mg/L and, therefore, it is apparent that malonate is oxidized more rapidly 

than either succinate or acetate. Formic acid levels gradually dropped throughout the 

course of the electrolysis from 5 mg/L in the solution electrolyzed for 0.5 h. 

Gas phase products 

The fu-st attempt to analyze the gas phase above the benzoquinone solution during 

anodic oxidation was to measure the yield of COj using Pt mesh electrodes and compare 

the CO2 yields with that from the thermostatically controlled Ru-Ti-Sb-SnOj/Ti tubular 

anode. The tubular electrodes were described in Feng et al. [32]. Concentrations of CO2 

were determined gravimetrically [45] and yields with Pt mesh electrodes were 63 % 

without use of an antifoam and 72% with an antifoam. Carbon dioxide yields using the 

quaternary metal oxide tubular electrodes were 74% for electrolysis periods in the range 

48 - 72 h. As stated earlier, there was evidence that some of the organic intermediate 

products were swept out of the solution by co-evolution of CO2 and Oj with the result of 

CO2 yields <100%. 
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Results from analysis of the headspace above the coiled electrode assembly using 

the solid phase microextraction fiber indicated the presence of acetaldehyde and 

benzoquinone. Therefore, Sep-Pak cartridges were used to quantify aldehydes and 

ketones emitted from the electrolysis solution. The Sep-Pak cartridges concentrated 

aldehydes and ketones from the gas stream. After a 48-h electrolysis period, < 1 % of 

the carbon in benzoquinone appeared to have been oxidized to acetaldehyde and acetone. 

No formaldehyde was detected in the gas stream. 

Because some of the small carboxylic acids generated by electrolysis are volatile, 

the condenser above the electrolysis cell was rinsed to see if any acids might adhere to it. 

Indeed, small peaks for acetic and formic acids were obtained using absorbance detection; 

however, no attempt was made to quantify these acids. 

Metal ions in electrolyzed solution 

Conceivably, metals from the quaternary metal oxide film, the Pt substrate, or the 

stainless steel cathode could be dissolved into the product solution. This is an issue of 

concern in consideration of metal oxide films for remediating organic waste solutions. 

Therefore, the elemental content of a benzoquinone solution after a 64-h incineration 

period at a well-used electrode was determined by ICP-MS. The estimated concentrations 

Oig/L) are: Ti = 0.5, Cr = 0.5, Mn = 1, Ni = 3, Zn = 32, Ru = 2.4, Sn = 1, Sb = 

1 and Pt = 0.6. The concentrations determined following electrolysis using a newly-

prepared electrode ranged from ten to one hundred times larger than those values 

reported here for a well-used electrode. 
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Chromium, Sn and Pt are elements of major environmental concern and these 

were present at very low levels (0.5 - 1 /xg/L)- Unexpectedly, Zn was at 32 tigt'L. To 

determine the source of Zn, the solution used for preparation of the quaternary metal 

oxide film was analyzed by ICP-MS. Indeed Zn was present at 260 ^ig/L. The source of 

the Zn is speculated to be the 12 M HCl used to prepared that solution (see section 2.1); 

however, that reagent was no longer available and confirmation of this speculation was 

not possible. The count rates for the Fe peaks at m/z = 54 and 56 were approximately 

the same as for the unremediated blank and, therefore, virtually no Fe dissolved from the 

stainless steel counter electrode during electrolysis. 

Electrochemical incineration mechanism 

Figure 6 presents a suggested mechanism for the oxidation of benzoquinone to 

maleic acid. If benzoquinone is absorbed onto the electrode surface and gives up an 

electron, a neighboring adsorbed OH radical then attacks the benzoquinone. If this 

process repeats itself at the para position, the ring could open to form maleic acid and 

ethene. No ethene was detected in the headspace analysis; however, Tomilov et al. 

reported that ethene is oxidized to CO2 at Pt but oxidized to acetaldehyde, acetone and 

propionaldehyde on Au or Pd electrodes [46]. 

The mechanism in Figure 6 suggests that maleic acid is reduced to succinic acid at 

the cathode followed by oxidation to malonic and acetic acid at the anode. Kanakum et 

al. reported on the electroreduction of maleic and fumaric acids to succinic acid at a lead 

cathode [47]. In our laboratory, an electrolysis of succinic acid resulted in the 

appearance of malonic acid followed by acetic acid. Tomilov et al. reported that alcohols 
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can be oxidized to the corresponding carboxylic acids if the reactants are not reduced at 

the cathode [46]. It is possible that use of divided cells to prevent access of maleic acid 

to the cathode might decrease the time for total electrochemical incineration. 

ConclusioDS 

Quaternary metal oxide films applied to Ti or Pt substrates exhibited high and 

persistent activity as anode materials for the electrochemical incineration of 

benzoquinone. Use of a Nafion membrane, sandwiched between the anode and cathode, 

eliminated the need for addition of soluble salts and, thereby, permitted product solutions 

to be analyzed by ES-MS. However, the low ionic strength of the solutions resulted in a 

substantial decrease in the working area of the electrodes with a corresponding increase in 

the electrolysis period needed to bring the COD effectively to a zero value. 

Numerous ionic intermediate products formed during the electrochemical 

incineration of benzoquinone were identified and quantified. The major intermediate 

products identified were p-hydroquinone, formic acid, fumaric acid, maleic acid, malonic 

acid, succinic acid and acetic acid. 

In future work, a cation suppressor with the anion-exchange column and ES-MS is 

expected to permit the confirmation of all anions in the electrolysis solution. Future 

work also will seek to shorten the electrolysis time by attempting to find a cathode that 

does not reduce maleic acid so the pathway can be avoided that results in generation of 

succinic and acetic acids that are degraded slowly. 
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A distinct advantage of using the solid-state electrolyte in large-scale applications 

of electrochemical incineration is the production of a final product which is essentially 

pure water that can be disposed into sanitary sewage systems without the need for 

desalting or pH adjustment. 
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Figure 1. Two dimensional view of electrode assembly: (a) 
quaternary metal oxide film on coiled Pt anode (0.62 mm 
thick); (b) solid state electrolyte (0.2 mm thick); and (c) 
stainless steel cathode (I mm wall). 
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Figure 2. Plots of COD and pH vs. time during 
electrochemical incineration of 100 mg/L benzoquinone 
using a Pt anode covered with the quaternary metal oxide 
film. 
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Figure 3. Total ion signal in LC-ES-MS obtained for (A) a 
1-h electrolysis solution of 100 ppm benzoquinone and (B) a 
standard solution. Peaks in A: (a) maleic acid, (b) succinic 
acid, (c) hydroquinone and (d) benzoquinone. Pe^ in B (1 
ppm each); (1) j3-hydroquinone, (2) resorcinol, (3) p-
benzoquinone, (4) pyrocatechol, and (5) phenol. 



www.manaraa.com

80 

6 

5 

4 

3 

2 

1 

0 

1 
0 

Time / min 

Figure 4. Chromatogram of 100 mg/L benzoquinone 
solution after a 2-h electrolysis period using an anion 
exchange column with conductivity detection. Peaks: (1) 
acetic acid, (2) unknown, (3) formic acid, (4) unknown, (5) 
chloride, (6) chlorate, (7) carbonate, (8) succinic acid, (9) 
unknown, (10) malonic acid, (11) unknown, (12) maleic 
acid, (13) unknown, (14) fumaric acid, and (15) sulfate. 
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Figure 5. Change in concentration of selected reaction 
products vs. electrolysis time using a Pt anode covered with 
the quaternary metal oxide film, Nafion membrane, and 
porous stainless steel cathode. 
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Figure 6. Suggested reaction pathway for the 
electrochemical incineration of benzoquinone at a Pt anode 
covered with the quaternary metal oxide film. 
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CHAPTER 4; THE DETERMINATION OF INTERMEDIATES AND 
PRODUCTS FORMED FROM THE ELECTROCHEMICAL 

INCINERATION OF 4-CHLOROPHENOL BY LIQUID 
CHROMATOGRAPHY - ELECTROSPRAY MASS SPECTROMETRY 

A paper to be submitted to Environmental Science and Technology 

Steve K. Johnson, Linda L. Houk, Jianren Feng, Dennis C. Johnson, R. S. Houk 

Abstract 

Electrochemical incineration (ECI) of 4-chlorophenol is achieved in an aqueous 

medium using a platinum electrode coated with a quaternary metal oxide film containing 

Ti, Ru, Sn, and Sb oxides. The electrode is stable and active when used with a solid 

Nafion membrane without the addition of soluble supporting electrolyte. Liquid 

chromatography (LC) methods, including reverse phase and ion exchange 

chromatography, are coupled with electrospray mass spectrometry (ES-MS) and used, 

along with gas chromatography-mass spectrometry (GC-MS), pH, chemical oxygen 

demand (COD), and total organic carbon (TOC) measurements to study the reaction and 

identify the unknown products and intermediates for the ECI of 4-chlorophenol. Twenty-

five intermediates are identified and reported. The most abundant intermediates are 

benzoquinone, maleic acid, succinic acid, malonic acid, and inorganic anions such as 

chloride, chlorate, and perchlorate. After 24 hours of ECI a starting solution containing 

100 ppm 4-chlorophenol yields only 1 ppm carbon while 98% of the original chlorine 

remains in solution as inorganic species. LC-ES-MS and direct infusion ES-MS detection 

limits are between 80 ppb and 4 ppm for the intermediates. 
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Introduction 

Chlorophenols are present in waste-water as byproducts of the pulp and paper, 

dyestuff, pharmaceutical and agro-chemical industries. Phenols can readily be 

chlorinated during waste-water and drinking water treatment [1,2]. Because these 

halogenated compounds are toxic and resist biodegradation, research efforts are underway 

to develop techniques which mineralize the carbon and chlorine atoms in chlorophenols. 

4-Chlorophenol was chosen as a model compound for the study of ECI, because it is 

widely present in the environment, it is a priority pollutant [3], and its degradation has 

been studied previously. 

Recent studies published about anodic oxidation of halogenated compounds include 

work by Kesselman et al. [4] and Brillas et al. [5]. Kesselman reported that quantum 

yields for photodegradation of organics in aqueous solutions were low. Therefore, these 

scientists used Nb-doped Ti02 electrodes for ECI to compare the effects of current 

density on degradation rates of organic substrates. Degradation rates for 4-chlorocatechol 

and 4-chlorophenol when determined at constant current (15 mA) were similar. However 

when the experiments were carried out at constant potential and additional amounts of 

these compounds were added to the electrolysis solutions, a larger current increase was 

seen with 4-chlorocatechol than with 4-chlorophenol. Because 4-chlorocatechol could 

adsorb more readily than 4-chIorophenol to Ti02, the authors concluded that 15-65 % of 

the 4-chlorocatechol was degraded as a result of direct oxidation on the electrode surface 

(depending on the electrode). Brillas et al. compared the degradation of 4-chlorophenol 

in acidic media under anodic oxidation, electro-Fen ton, photoelectro-Fenton and peroxi-
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coagulation conditions [5]. Total organic carbon (T(X^) was reduced substantially faster 

for the last three methods, where Fe^^ acted as a catalyst to produce hydroxyl radicals 

(OH) from H2O2 generated at a cathode sparged with OjCg). The authors stated that the 

degradation by OH- was much more efficient in the medium than at the vicinity of the R 

anode. A constant current of 100 mA yielded higher current efficiencies than 300 mA. 

Oxalic acid was the main product. The authors speculated that Fe^"^ complexed with this 

diacid and that hydroxyl radicals did not have a high capability to oxidize this complex 

but UV light did. 4-chlorocatechol was the initial oxidation product. Maleic and fiimaric 

acids were detected in the product solution by ion exclusion chromatography. 

Vinodgopal et al. described the electrochemically assisted photodegradation of 

4-chlorophenol [6]. A thin film of TiOj was applied to an optically transparent anode. A 

divided cell was used to observe the effects of N2 vs O2 saturation of the photooxidation 

solutions. 4-Chlorocatechol was the major intermediate in the 02-saturated solutions. 

Hydroquinone predominated in the Nj saturated solutions but its further degradation was 

retarded in the absence of O2. Three pathways by which 4-chlorophenol can be oxidized 

at an irradiated semiconductor particle were also presented. Haque and Rusling also 

studied 4-chlorophenol with photoelectrodes and reported that 4-chlorophenol was 

completely mineralized to CO2 and CI' [7]. 

Stucki et al. reported on the performance of Sb-doped SnOj anodes for ECI of 

wastewater [8]. The oxidation of organic compounds was 5 times more efficient than 

observed for Pt anodes. Sn02 produced less Clj and therefore showed less potential to 

form hazardous halogenated hydrocarbons. The use of an undivided cell did not indicate 
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any interference of the cathode with the oxidation and the rate of oxidation was not 

limited by mass transfer. The authors concluded that ECI is an interesting alternative to 

chemical oxidation using O3 or H2O2. 

Kaba et al. described the electrochemical incineration of human biomass which 

contained CI" with Pt and PbOj anodes in 12 M H2SO2 [9]. CI2 constituted less than 

0.1 % of the evolved gases. The authors did not mention if they looked for halogenated 

products such as trihalomethanes. This group did find that the use of ultrasound and the 

addition of the Ce^'^/Ce'*^ redox couple enhanced the rates of waste oxidation. 

Comninellis and Nerini compared Ti/Sn02 and Ti/IrOz anodes to electrolyze 

phenol in the presence of NaCl [10]. The presence of NaCl in the electrolysis solution 

catalyzed the anodic oxidation of phenol only at Ti/Ir02 anodes. The catalytic effect was 

attributed to CIO" near the anode and/or in the bulk solution. However the improved 

efficiency with the use of NaCl was offset by the formation of chloroform. Therefore, 

our study of the ECI of 4-chlorophenoI included techniques to identify and quantify 

halogenated hydrocarbons produced as a result of this waste remediation process. 

Research efforts in our laboratory have examined the increased catalytic activity of 

Fe(III)-doped Pb02 films on titanium substrates [11,12]. More recently, work in our 

laboratory reported that benzoquinone could be incinerated in water with no supporting 

electrolyte using a quaternary metal oxide on a Pt anode and a porous stainless steel 

cathode [13]. Although values of TOC and chemical oxygen demand (COD) could be 

reduced to 1 ppm, electrolysis times were lengthy. 
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The coupling of ion chromatography with mass spectrometry provides a unique 

opportunity to identify and quantify inorganic and organic anions produced as a result of 

ECI. Electrospray ionization (ESI), first developed by Dole and co-workers [14,15], is 

an efficient method for the transfer of ions from liquid solution into the gas phase. Fenn 

and Yamashita demonstrated that ESI is a versatile ionization source for mass 

spectrometry by developing electrospray mass spectrometry (ES-MS) [16,17]. ES-MS 

ionization and extraction conditions can be adjusted to deliver protonated cations or 

deprotonated anions with a wide variety of samples and solutions to study inorganic 

[18,19], organic [20-22], and biological compounds [23,24]. 

Liquid Chromatography (LC) coupled with ES-MS offers rapid and selective 

methods for determining unknown compounds in complex mixtures. Applications for 

such a detection method are numerous, including the determination of pesticides and 

herbicides [25-27], dyes [28,29], environmental toxins [30-32], and monitoring waste 

streams [33]. Currently, GC-MS is the most common technique offering similar 

unknown determination ability, but the GC-MS analysis of aqueous samples requires 

sample extraction. The determination of carboxylic acids requires analyte derivitization 

before injection onto the column [34]. These sample pretreatment procedures increase 

the risk of sample contamination or changing the chemical composition of the analyte 

before analysis. The ES-MS and LC-ES-MS systems described here require no analyte 

derivatization or pretreatment, assuring that a representative sample is being observed. 

Several different liquid chromatography systems have been coupled to ES-MS to 

take advantage of the different separation abilities. This study uses two LC methods to 
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determine the components of a complex ECI mixture. Reverse phase chromatography is 

useful in the study of aromatic molecules that are not easily ionized, and ion exchange 

chromatogr^hy separates both organic and inorganic ions. Ion exchange 

chromatography was used extensively to observe identified compounds, because ion 

exchange chromatography offers good sensitivity when coupled to ES-MS and it can 

separate almost all of the identified intermediates. 

Ion exchange chromatography has been coupled to mass spectrometers with 

atmospheric pressure ionization [35], thermospray ionization [36], particle beam 

ionization [37], and ESI [38]. Large sodium concentrations in the ES-MS can cause 

significant signal reduction, so a suppressor is used to continuously remove sodium ions 

present in the ion exchange mobile phase. In a membrane ion suppressor, sodium ions 

are replaced with hydrogen ions. The hydrogen ions combine with hydroxide ions also 

present in the mobile phase to form water, which causes no problems in the ES-MS. 

Ion exclusion chromatography is another LC method used to separate carboxylic 

acids, such as those found in this study [39,40]. Ion exclusion chromatography has been 

coupled to ES-MS in this laboratory for the determination of carboxylic acids [41], The 

technique offers greater separation of carboxylic acids than ion exchange 

chromatography, but unresolved peaks are usually not a concern with a selective detector 

like mass spectrometry. Ion exchange chromatography is able to separate a greater 

variety of analytes and offers better detection limits and resolution than ion exclusion, 

when used with ES-MS, because of the complex instrumental set-up for ion exclusion 

chromatography-ES-MS [41]. 
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Experimental Section 

Reagents and samples 

All chemicals were reagent grade (Aldrich) and water was distilled and deionized 

(18 MO cm ' at 25°C) with a Bamstead Nanopure-n system (Newton, MA). Regardless 

of the chromatography system, the mobile phases were always filtered under vacuum with 

a Magna-R nylon membrane (0.22 fim pore diameter. Fisher) and then degassed under 

vacuum. Standards were dissolved in water to form 1000 ppm standard stock solutions 

which were frozen until needed to prevent microbial degradation. ECI solutions were 

also frozen or refrigerated, for a period of less than twenty days, until needed. Sample 

and standard solutions were filtered with Costar syringe filters (0.22 /im pore size) 

directly before injection onto the chromatography column. 

ECI apparatus 

The ECI set-up and preparation of quaternary metal oxide films have been 

described [13]. In this study, the film was deposited on a 22 gauge platinum wire 

producing an anode with an area of 5.3 cm^ coiled around a stainless steel counter 

electrode. The electrolysis was conducted with a constant current of 0.95 A, resulting in 

a current density of 0.18 A/cm^. Nafion tubing with an inner diameter of 0.4 mm was 

obtained from Perma Pure Inc. 

Electrospray mass spectrometer 

An API/1 (Perkin-Elmer SCDEX, Thomhill, ON, Canada) single quadrupole mass 

spectrometer was used. The API/1 used a curtain gas interface and has been described 

previously [42,43]. The lonSpray source of the API/1 was operated with a Perkin-Elmer 
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SCIEX TurboIonSpray (Thomhill, ON, Canada) attachment. The TurboIonSpray forces 

a 5 L min ' flow of nitrogen gas at 500"C across the aerosol stream exiting the lonSpray 

tube, increasing collisions and evaporation rates involved in the ionization process and 

allowing the use of larger flow rates (1-2 mL min ') into the ES-MS. The detection 

limits and signal to noise ratio are improved with TurboIonSpray for many compounds 

when compared to similar studies in this laboratory before the addition of the 

TurboIonSpray [41]. The attachment also provides much more flexibility in 

chromatographic flow rates and eluent compositions. The ES-MS conditions were 

optimized to provide [M-H]" every day, but remained fairly consistent to the instrumental 

operating conditions listed in table 1. Nearly the same ES-MS conditions were used for 

each chromatography technique and direct infusion. These parameters were adjusted 

daily to maximize ion signal and chromatographic quality and differed slightly from day 

to day. 

As reported by Horlick, it was necessary to compensate for the variation of 

electrospray signal with the total ionic composition of the sample by using an internal 

standard ion [44]. In this study, chloroacrylate and propionate were used as internal 

standards to employ a ratio for quantitative measurements. Fairly linear calibration 

curves, with correlation coefficients of 0.980 to 0.999 were compiled for analyte 

concentrations in the range of 0.1 ppm to 50 ppm. Detection limits were determined as 

the concentration of analyte required to provide a net signal equivalent to 3 times the 

standard deviation of the blank. 
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Table IES-MS Operating Conditions 

Ionization Source TurfooIonSpray 

Nebulizer Gas Pressure 40 psi, zero grade (99.998%) N2 

Nebulizer Gas Flow Rate 0.6 L min * 

Sample Flow Rate 1 mL min"' 

Curtain Gas Pressure 80 psi, carrier grade (99.999%) N2 

Curtain Gas Flow Rate 0.7 L min"' 

Curtain Gas Temperature 60°C 

Turbo Gas Flow Rate 5 L min ' 

Turbo Gas Temperature 500°C 

Discharge Needle Voltage -4500V* 

Interface Plate Voltage -300V* 

Orifice Plate Voltage -118V* 

RF Only Quadrupole Voltage -lOOV* 

Mass Analyzer Quadrupole Voltage -95V* 

CEM Detector Voltage -t-3800V 

Operating Pressure of Quadrupole Chamber 3.5 x 10"' Torr 

Dwell Time 200 ms 

* Typical values cited. 

Reverse phase liquid chromatograpby 

The experimental set-up for LC-ES-MS systems is shown in figure 1. 

Electrospray ionization requires the sample liquid to contain organic solvent such as 

methanol or propanol to facilitate droplet formation and solvent evaporation. A Zorbax 

(Rockland Technologies, Chadds Ford, PA) SBC18 column (25 cm length, 3.0 cm dia.) 

was used for reverse phase chromatography. The Zorbax column is operated with a 1:1 

methanol/water mobile phase at a flow rate of 0.5 ml/min. These conditions match with 

the appropriate ES-MS conditions, using TurboIonSpray, so the effluent of the reverse 

phase column can be fed directly into the ES-MS as represented in figure la. The 
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simplicity of the reverse phase chromatography - ES-MS set-up and the excellent match 

of mobile phase composition and flow rates gave reverse phase - ES-MS good detection 

limits and separation quality compared to other LC-ES-MS systems. 

Ion exchange liquid chromatography 

A Dionex lonPac AS 11 anion exchange column (Sunnyvale, CA) was used with a 

water/methanol solvent. This separation also required a strong base such as 27 mM 

sodium hydroxide in the mobile phase. A self-regenerating (4mm dia.) suppressor 

(Dionex) was used as shown in figure lb to remove sodium cations and replace them with 

hydrogen ions before entering the ES-MS. The ion exchange system also included an 

lonPac ATC-1 anion trap (Dionex) and an lonPac AG 11 guard column (Dionex). LC-

ES-MS used with ion exchange chromatography can accommodate an eluent gradient and 

the following program was used: Mobile phase A contained 1(X)% water, mobile phase B 

was made up of 1 mM sodium hydroxide, mobile phase C was 100 mM sodium 

hydroxide, and mobile phase D contained 100% methanol. The gradient was held at 

25% A, 25% B, and 50% D from t=0 to 2 min, progressed linearly to 10% A, 40% B, 

and 50% D at t=5, progressed linearly to 10% A, 15% B, 25% C, and 50% D at 15 

min, and was held at that composition until the end of the separation. 

Experimental conditions for the liquid chromatography methods are shown in table 

2. The GPM-2 analytical pump was used for the mobile phase of each separation, and a 

Dionex model AMP-1 analytical pump was used to regenerate the suppressor when using 

ion exchange chromatography. A Cole-Parmer syringe pump (Nile,' IL) was used for 

direct infusion analysis. 
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Table n Chromatographic Components and Operating Conditions 

Chromatography Components 

Pump Dionex model GMP-2 analytical pump 

Injection Valve Rheodyne 7010 high pressure injector (Cotati, CA) 

Injection Volume 50 /iL 

Reverse Phase Chromatography 

Column Zorbax SBC18 (25 cm length, 3.0 mm dia.) 

Mobile Phase 50% Water, 50% Methanol 

Liquid Flow Rate 1 mL min'^ 

loD Exchange Chromatography 

Column Dionex lonPac AS 11 (25 cm length, 4 mm dia.) 

Mobile Phase 2.5 to 26.5 mM NaOH in 50% methanol 

Liquid Flow Rate ImL min ' 

Suppressor Column Dionex ASRS-11 (4mm dia) 

Regenerent 25 mM sulfuric acid 

Regenerent Flow Rate 5 mL min"' 

Inductively coupled - mass spectrometry 

Inductively coupled plasma-mass spectrometry (ICP-MS) measurements were 

taken using the apparatus and operating conditions described by Hu et al. [45]. A 

semiquantitative analysis was used for calibration. Spectral scans were measured in 

separate m/z windows typically 50 daltons wide. Analyte signals were adjusted for blank 

signal, isotopic abundance and approximate degree of ionization [46] and then compared 

to those for known concentrations of Co, La, Tl, whichever was in the particular m/z 

window of interest. Scans of the full m/z range showed no matrix ions, so matrix effects 

were negligible. 
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GC-MS techniques 

Gas escaping from the ECI solution during electrolysis was collected by a Tekmar 

purge trap K (Cincinnati, OH). These sorbent column traps were then analyzed by the 

EPA approved University of Iowa hygienic laboratory using a semiquantitative method 

based on EPA method 8260. In this analysis, the sorbent column trap was heated and 

back-flushed with an inert gas to desorb purgeables onto a GC column. The GC was 

temperature programmed to separate the purgeables which were then detected with a 

Hewlett Packard model 5970B quadrupole mass spectrometer. 

A liquid sample was also analyzed using EPA method 8260 at the University of 

Iowa hygienic laboratory. For water analysis, an inert gas was bubbled through the 

sample to transfer purgeables to the vapor phase. This vapor was swept through a 

sorbent column where the purgeables were trapped. The trapped purgeables were then 

transferred to a GC column as described above and detected with a Hewlett-Packard 

model 5972A quadrupole mass spectrometer. 

Other techniques 

Chemical oxygen demand (COD) was determined by a Hach DR200 analyzer 

(Loveland, CO), and total oxygen concentrations (TOC) were determined using a DC 190 

TOC analyzer (Dohrmann, Santa Clara, CA) at the University of Iowa's Hygienic 

Laboratory. pH measurements were made with an Orion Research Inc. model 601A pH 

meter (Cambridge, MA). 
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Results and Discussion 

Electrode performance 

Figure 2 shows values of COD for an ECI solution as a fiinction of electrolysis 

time, starting with a 100 ppm solution of 4-chlorophenol. The COD concentration drops 

from 140 ppm to 10 ppm in the first 12 hours of electrolysis. After 24 hours of 

electrolysis, only 1 ppm COD remains. These data show that the ECI process readily 

destroys organic compounds in the solution. TOC data provide similar results as the 

carbon concentration drops from 59 ppm to I.l ppm carbon in 24 hours. The liquid 

product of 24 hour ECI passed EPA standards after being analyzed using method 8260 

for waste water. This product contained no aromatic or halogenated compounds above 

the detection levels of method 8260. 

Solution analysis 

The pH of the electrolysis solution was monitored during ECI, and the results are 

shown in figure 3. The pH drops from 6 to 2 after 4 hours of electrolysis and then at 8 

hours of electrolysis the pH rises to approximately 3 where it stays for the remainder of 

the incineration process. The drop in pH is believed to be caused by the production of 

carboxylic acid intermediates in the first 4 hours of electrolysis. Previous studies have 

also demonstrated the production of carboxylic acids during the electrolysis of 

benzoquinone and phenol solutions [13,47-49]. Carboxylic acids were also produced and 

found to reach peak concentration between 2-4 hours for ECI of 4-chlorophenol in this 

study. 
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LC-ES-MS was used to determine the unknown compounds remaining in the ECI 

solution. A sample chromatogram using ion exchange ES-MS for separating the ECI 

solution collected after 2 hours of electrolysis is shown in figure 4. The peaks reported 

correspond to the following compounds; (a) formate, (b) chloride, (c) chlorate, (d) 

2-ketoglutarate, (e) succinate, (f) malonate, (g) fiimarate, (h) maleate, (i) oxalate, (j) 

perchlorate. It should be noted that peaks d and e were not resolved to provided shorter 

analysis times. Fortunately, the selective detection ability of the mass spectrometer 

allows for determination of the coeluting components. The unknown components of the 

ECI solutions were determined using chromatograms like figure 4 and scans from direct 

infusion. Retention time, molecular weight, and some fragmentation data of unknown 

compounds were compared to those of known standards. 

Intermediate concentrations as a function of ECI time 

Once peaks are identified, they are observed to determine the concentration of 

intermediates as a function of ECI time. Figure 5 shows the concentration of 6 different 

compounds at different ECI times. The concentration of 4-chlorophenol is shown in 

figure 5a. The 4-chlorophenol concentration experiences a steep drop from 108 ppm to 

1 ppm after 4 hours of ECI. Figure 5b shows the chloride ion concentration increases to 

a peak of 13 ppm at 2 hours of ECI. The chloride ion concentration then drops gradually 

to 3 ppm after 24 hours of ECI. The 4-chlorophenol and chloride graphs suggest that the 

chlorine atom is cleaved from 4-chlorophenol early in the ECI process, and chloride ions 

continue to be oxidized forming chlorate and perchlorate ions. 
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Benzoquinone, maleic acid, malonic acid, and succinic acid concentrations are also 

shown in Fig. 5. The benzoquinone concentration rises to 20 ppm after 2 hours of 

incineration and then drops to less than 1 ppm after 4 hours of ECI. Maleic acid peaks 

at a concentration of 9 ppm after 2 hours of ECI, malonic acid peaks at a concentration 

of 13 ppm after 4 hours, and succinic acid peaks at a concentration of 10 ppm after 8 

hours of ECI. 

These data suggest that benzoquinone is produced soon after the chlorine is 

removed from 4-chlorophenol. Then benzoquinone is oxidized rapidly to form maleic 

acid, and maleic acid is oxidized to form malonic acid or reduced to form succinic acid. 

It appears that the oxidation and reduction of these carboxylic acids is not as fast as the 

4-chlorophenol and benzoquinone reactions. Peak concentrations and peak ECI times, 

along with retention times, detection limits and the percent of total carbon and chlorine 

present in each intermediate at its peak concentration are shown in table 3. These 

findings will be discussed more thoroughly in conjunction with the proposed mechanisms 

in a later section. 

GC-MS results 

GC-MS were used to analyze gas that escapes from the reaction vessel. Sorbent 

column traps were used to collect gaseous products for 8 hour intervals. A GC-MS 

chromatogram for the gas trapped during the first 8 hours of electrolysis is shown in 

figure 6. Labeled compounds, bromochloromethane, 1,2-dichlorethane, and toluene-8d 

are internal standards added to the sample for analysis. Compounds present from the 

ECI sample are labeled as follows: (a) cyclopentene, (b) hexane, (c) chloroform, (d) 
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Table IH Intermediates In 4-chlorophenol ECI Solution 
Peak Peak Detection % Total 

Compound m/z 
tr 

(min) 
Cone, 
(ppm) 

Time 
(hr) 

Limit 
(ppm) 

C(CI) 
at Peak 

4-chlorophenol CIC4H4OH 127 25 108 0 0.1 100 

chloride cr 35 19 13 2 0.05 (34.4) 

chlorate ciOj* 83 22 30 16 0.1 (33.5) 

perchlorate cior 99 37 28 24 0.4 (26.2) 

phenol cjEijOH 93 17 1 2 0.1 1.0 

hydroquinone C4H,(0H)2 109 2* 3 2 0.04* 2.5 

benzoquinone CSH«(=0)2 108 3* 20 2 0.05* 17.1 

2-ketoglutaric acid 145 26 4 2 0.6 2.1 
HOiCCHjCHjCOCOjH 

malic acid 133 25 8 2 0.2 3.7 
HOJCCH2CH(OH)COJH 

maleic acid 115 27 9 2 0.08 4.8 
HO,CCH=CHCOjH 

fiimaric acid 115 26 4 2 0.1 2.1 
H0JCCH=CHC02H 

malonic acid hOjCCHzCOiH 103 26 13 4 0.3 5.8 

oxalic acid HOiCCOjH 89 29 6 4 1 2.1 

formic acid HCO2H 45 11 5 4 2 1.7 

succinic acid hOiCHzCHiCO^h 117 24 10 8 0.8 5.2 

acetic acid cHjCOjH 59 10 2 24 0.4 3.4 

4-chlorocatechol CgHj(OH)2Ci 143 r ? 2 0.05* 7 

chloromaleic acid" 149 32 7 4 7 7 
H02CC(C1)=CHC02H 

chloroacetic acid CICH2CO2H 93 19 1 2 2 0.3 (1.0) 

dichloroacetic acid 127 23 2 4 4 0.4 (2.9) 
CljCHiCOjH 

' Separated by reverse phase chromatography-ES-MS 
" Suspected intermediate 
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benzene, (e) cyclohexane, (f) 3-chloro-l,3-pentadiene, (g) toluene, (h) tetrachloroethane. 

In the first 8 hours of ECI, GC-MS reveals the formation of cyclohexane (3700 ng), 

chloroform (140 ng), benzene (280 ng), tetrachloroethene (12 ng), and toluene (18 ng). 

An unidentified peak at m/z=102 appears in the first 8 hours of ECI, and fragmentation 

data suggest that this peak is due to 3-chloro-l,3-pentadiene. The second 8 hours of ECI 

produce chloroform (45 ng), tetrachloroethene (6 ng), toluene (8 ng), and trace amounts 

of cyclohexane, benzene and the 3-chloro-l,3-pentadiene. The ECI process continues to 

produce trace amounts of these 6 compounds after 16 hours of electrolysis. The 

concentration of these compounds is shown in table 4. 

Table IV GC-MS Data (ng/sample) 

Analyte 0-8 hours 8-16 hours 16-24 hours 

cyclohexane 3700 <50 <50 

benzene 280 <50 <50 

chloroform 140 <50 <50 

toluene 18 8 3 

tetrachloroethene 12 6 5 

3-chloro-1,3-pentadiene* 7 7 7 

' Suspected product 

The production of benzene and chlorine-containing organic molecules is potentially 

hazardous, and the chance of these products avoiding further oxidation by escaping the 

incineration solution through the gas phase is cause for concern. It should be noted that 

volatile compounds were deliberately allowed to escape for identification purposes, and 

no attempt was made to keep volatile compounds in the ECI solution. It is believed that 

a simple water-cooled condenser would return volatile compounds to the ECI solution 
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where they would undergo continued oxidation and be converted to less harmful products. 

An activated charcoal trap could also be used to prevent volatile compounds from 

escaping to the atmosphere. Production of large amounts of chloroform has been a 

concern common in similar 4-chlorophenol remediation studies. The ECI process used in 

this study produces only low amounts of chloroform, and litde chloroform ( < 1 ppm) 

remains in the 24 hour ECI solution. 

In studies in this laboratory, using an electrode of similar construction with an 

area of 3.6 cm^ and operating with a current density of 0.26 amp/cm^ and a condenser, 

98% of the original chloride remains in the liquid solution, as determined by ion 

exclusion chromatography with a Dionex ED40 electrochemical detector equipped with a 

conductivity cell. In another similar study with the Iowa State University Instrument 

Services, ozone was observed using capillary tubing to transfer vapor produced during 

ECI directly to a mass spectrometer. 

Total carbon and chlorine concentrations 

The carbon and chlorine concentration of the solution can be calculated using the 

data collected through LC-ES-MS by calculating the percent of carbon and chlorine in 

each of the compounds detected. Figure 7 shows the total carbon and chlorine 

concentrations remaining in solution vs time, as calculated from the LC-ES-MS data. 

The total carbon concentration drops from 65 ppm to less than 20 ppm in 4 hours. 

Thereafter, the total carbon concentration drops more slowly from to 10 ppm in 24 hours. 

These data roughly agree with the TOC results where the total carbon concentration drops 

from 59 to 1 ppm. 
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Meanwhile, the total chlorine concentration drops firom 33 ppm to 23 ppm after 2 

hours of ECI. After 2 hours of electrolysis, the chlorine concentration in solution 

stabilizes near 23 ppm even though most of the chorine is being oxidized from chloride 

ion to chlorate and perchlorate ions. In figure 7 it appears that there is a sudden drop in 

carbon and chlorine concentration after 30 minutes of ECI. There is no similar 

depression of concentration in the COD data. This suggests that there is an early 

intermediate formed before one hour of ECI that was not quantified by LC-ES-MS in this 

study and, therefore left out of the calculations for figure 7. Using LC-ES-MS data, 75% 

of the original chlorine remains in solution after 24 hours of ECI. Chlorine loss can be 

attributed to the escape of gaseous compounds, such as 3-chloro-l,3-pentadiene, 

unquantified intermediates, such as chloromaleic acid, or unidentified intermediates. 

Electrochemical incineration mechanism 

Figure 8 presents possible pathways for the ECI of 4-chlorophenol to form CO2. 

It is shown in figure 5 that the chlorine atom is removed from 4-chlorophenoI early in the 

incineration process and yields hydroquinone and benzoquinone upon further oxidation. 

The results presented in table 3 and figure 5 agree with this pathway. Benzoquinone is 

oxidized to produce maleic or fumaric acids, which can be oxidized to produce malonic 

acid, followed by acetic acid, and finally carbon dioxide. This proposed pathway agrees 

with similar pathways reported by Kuo and Huang using ozonation techniques [1]. 

Maleic acid can also be reduced at the cathode to form succinic acid, as reported by 

Kanakum et al. [SO]. It has been shown in our laboratory that electrolysis of succinic 

acid results in the production of malonic and acetic acids, which again leads to CO2 [13]. 
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Another possible pathway presented in figure 8 involves the oxidation of 

4-chlorophenol prior to the removal of the chlorine atom, resulting in the formation of 

4-chlorocatechol, which yields oxalic acid or chloromaleic acid. A similar mechanism 

for the oxidation of 4-chlorocatechol to form chloromaleic acid was suggested previously 

[1]. Chloromaleic acid can be oxidized to produce chloroacetic acid which can react with 

another chlorine atom to form dichloroacetic acid. Both of these products will oxidize 

further to eventually produce acetic acid and carbon dioxide. 

Studies in this laboratory have suggested that 1,2-benzoquinone is produced very 

quickly during the ECI of 4-chlorocatechol. 1,2-Benzoquinone is unstable and no 

standards were available for intensive studies involving its behavior during ECI. 

Observations of the ECI of 4-chlorocatechol suggest that 1,2-benzoquinone leads to the 

same carboxylic acid intermediates as 1,4-benzoquinone, but the mechanism of such a 

reaction is uncertain, as signified by the dashed lines and question mark in figure 8. 

According to data in table 5, phenol is also produced within the first 2 hours of 

ECI. The pathway for phenol production is uncertain, however, reactions at the cathode 

are suspected to result in phenol. It has been shown previously that phenol is oxidized to 

form hydroquinone and benzoquinone [51], which would suggest that phenol 

intermediates would follow the benzoquinone pathway upon further oxidation. 

From the concentration of intermediates in table 3, it is apparent that both the 

benzoquinone and 4-chlorocatechol pathways exist, but the pathway through 

benzoquinone and maleic acid seems to be the most likely, as evident from the high peak 
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concentration of benzoquinone. Figure 8 also suggests that the chloride ion is oxidized to 

produce chlorate and perchlorate ions. 

Identification of intermediates by mass spectrometry 

Most compounds were identified by comparing their mass spectra and retention 

times with those for pure standards. Two such compounds were identified despite the 

lack of such standards. Figure 9 shows LC-ES-MS selected ion chromatograms that 

indicate the presence of an anion at m/z = 149 and 151 that has the 3:1 signal ratio 

characteristic of one CI atom. This ion fragments under energetic extraction conditions 

(voltage difference between orifice plate and RF-only quadupoles = 30 volts, compared 

to the normal 18 volts) to lose CO2 and still retain the CI atom, which indicates that the 

parent ion contains two carboxylate groups [41]. It is therefore assigned to chloromaleic 

acid (H02CCH=CC1C02H), which is a suspected intermediate. The use of ES-MS to 

identify the chloromaleate anion illustrates the value of this technique for charged organic 

ions in solution. 

The GC-MS measurement also indicated the presence of a compound at t^ = 10.3 

min whose electron impact mass spectrum is shown in Figure 10. The peaks at m/z = 

102 and 104 in a 3:1 signal ratio again indicate that the parent ion contains one Cl atom. 

The fragments at m/z = 74 and 76 indicate loss of C2H4 due to the ethene group 

(-CH=CH2) in the parent molecule. Likewise, the peaks at m/z = 73 and 75 represent 

loss of CiHj from the =CHCH3 group. The Cl atom is retained on each of these pairs of 

ions. Peaks from CCr also appear at m/z = 47 and 49. 
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Hence, this molecule is 3-chloro-l,3-pentadiene, CH3CH=CC1CH=CH2. 

Surprisingly, this mass spectrum does not appear in either the NIST or Wiley 

compilations. This compound likely forms when the when the aromatic ring of 4-

chlorophenol is broken at the phenolic carbon during ECI: 

Both the chloromaleic acid and 3-chloro-l,3-pentadiene were found only during 

the first 8 hours of the electrolysis. Because there were no standards, the compounds 

could not be quantified, but they likely represent much of the "missing" carbon and 

chloride represented by the dips in total C level at 0.5 and 1 hour in Figure 7. 

Elemental analysis for electrode materials 

When metal oxide films are considered for the remediation of organic waste, the 

possibility of metals dissolving into the product solution from the film, the platinum 

substrate, or the stainless steel cathode, becomes a concern. Therefore, the elemental 

content of the ECI solution was determined by ICP-MS after incineration. The estimated 

concentrations (ppb) of the 8 elements observed are: Ti=5.3, Zn=5.4, Ru=22, Sn=10, 

Sb=25, Ba=0.2, Pt=8.0, Pb=0.6. The concentrations determined after electrolysis 

using a newly-prepared electrode ranged from ten to one hundred times larger than those 

CI ni 

+ HCO2H or CO2 

OH 
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reported here for a well-used electrode, so there is a need to "break in" an electrode 

before operation, to avoid much metal dissolution. 

Conclusions 

The ECI process described exhibited the ability to oxidatively degrade 

4-chlorophenol. The majority of intermediates produced during the electrolysis were 

identified and studied using a variety of techniques. LC-ES-MS, particularly using ion 

exchange chromatography and a suppressor, was extremely important for the 

determination of unknowns in the solution due to its separating ability for a wide range of 

analytes. Pathways were proposed involving the intermediates determined. 

The ECI process quickly removed chlorine from the 4-chlorophenol compound 

and formed carboxylic acids from benzoquinone, but the process of oxidizing the various 

carboxylic acid intermediates required longer ECI times. Future electrodes should be 

designed to consider rapid oxidation of both the starting material, 4-chlorophenol, and the 

intermediate carboxylic acids. Simple apparatus improvements, such as a condenser or a 

charcoal trap, can be used in future studies to reduce the amount of vapors escaping the 

ECI vessel. The reduction of escaping vapor should eliminate the production of 

chlorocarbons. 

The ES-MS apparatus used for this work has a ESI tube of fixed size, and this 

tube requires the use of a narrow diameter (100 fim i.d., 170 urn o.d.) capillary for 

solution transport. The narrow capillary results in high back-pressure, and this high back 

pressure can damage the suppressor. The use of a wider ESI tube would allow for larger 
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diameter capillary and provide lower back-pressure. Lower back-pressure will likely 

increase the lifetime and efficiency of the suppressor, create lower noise, and improve 

detection limits. 
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Injection Valve 

HPLC pump 

Mass Spectrometer 
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(a) Reverse phase chromatography with ES-MS 

HPLC pump 

Anion Trap 
^ Ion Exchange Column 
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Electrospray Ionization Tube 

/ \ 
Injection Valve Guard Column 

Mass Spectrometer 

Suppressor 

(b) Ion exchange chromatography with ES-MS 

Figure 1. Experimental set-up for LC-ES-MS systems, using 
reverse phase (a) and ion exchange (b) chromatography. 
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Figure 2. COD of 100 ppm 4-chIorophenol solution vs ECI 
time. The final COD level at 24 hours is 1 ppm. 
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Figure 3. pH of 100 ppm 4-chIorophenol solution vs ECI time. 
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Figure 4. LC-ES-MS chromatogram for a 100 ppm 
4-chIorophenol solution after 2 hours of ECI. Peak 
assignments are as follows: (a) formate, (b) chloride, (c) 
chlorate, (d) 2-ketoglutarate, (e) succinate, (f) malonate, 
(g) fumarate, (h) maleate, (i) oxalate, (j) perchlorate. 
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I (a) 4-Chlorophenol 

OH 

(b) Chloride 

CI 

(d) Maleic Acid 

0 

(c) Benzoquinone 
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(e) Malonic Acid 
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(f) Succinic 
Acid 
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Figure 5. Concentration of selected compounds vs ECI time, 
(a) 4-chIorophenol, (b) chloride, (c) benzoquinone, (d) maleic 
acid, (e) malonic acid, (0 succinic acid. 
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Figure 6. GC-MS chromatogram from a purge trap of 
gaseous products collected in the first 8 hours during 
the ECI of a 100 ppm 4-chlorophenol solution, (a) 
cyclopentene, (b) hexane, (c) chloroform, (d) benzene, 
(e) cyclohexane, (0 3-chloro-l,3-pentadiene*, (g) 
toluene, (h) tetrachloroethene. 
'Suspected intermediate 
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Figure 7. Total carbon and total chlorine concentrations of 
100 ppm 4-chlorophenol solution vs ECI time. 
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Figure 8. Proposed pathways for the ECI of 4-chIorophenol. 
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Figure 9. Chromatograms for suspected chloromaleic acid (a) 
and a fragment due to the loss of CO2 C)- The sample was a 
4-chlorophenol solution after 4 hours of ECI. 
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Figure 10. Electron impact mass spectrum from an unidentified 
GC-MS peak (tR=10 minutes). The sample is produced in the 
first 8 hours of ECI starting with a 100 ppm 4-chlorophenol 
solution. 
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CHAPTERS. DETERMINATION OF SMALL 
CARBOXYUC ACIDS BY CAPILLARY ELECTROPHORESIS 

WITH ELECTROSPRAY MASS SPECTROMETRY 

A paper to be submitted to Analytica Chimica Acta 

Steve K. Johnson, Linda L. Houk, Dennis C. Johnson, R. S. Houk 

Abstract 

Capillary electrophoresis (CE) is used with electrospray mass spectrometry 

(ES-MS) to analyze a mixture of succinic, maleic, formic, and glutaric acids. A make-up 

sheath flow is used to couple CE with ES-MS. Ion extraction voltages can be found that 

produce reasonable signals from the negative parent ions ([M-H]') of these compounds as 

well as many other carboxylic acids. The CE mobile phase consists of an aqueous 

solution of napthalenedisulfonate (NDS), pyromellitic acid, and methanol, with 

diethylenetriamine (DETA) as an electroosmotic flow modifier. Compromise 

experimental parameters for the CE separation and ES-MS detection are evaluated. 

Detection limits for CE-ES-MS determination of the sample were 1-10 ppm or 120-1200 

pg. The carboxylic acid sample is injected directly into the CE column with little or no 

preparation. 

Introductioii 

Low molecular weight carboxylic acids in aqueous solutions are important in 

environmental samples such as environmental waters and waste treatment sites, fermented 

juices, and biological samples [1-3]. Currently, gas chromatography - mass spectrometry 
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(GC-MS) is the most common method for the determination of carboxylic acids [4,5]. 

For GC-MS analysis, these analytes are often derivatized to increase their volatility 

before GC separation takes place, and preparation of the sample can be difficult and time-

consuming [5-7]. With any extensive sample pretreatment, there is a risk of 

contaminating the sample or changing its characteristics. Liquid chromatography (LC), 

particularly ion exclusion chromatography, typically does not require extensive sample 

preparation and is an effective method for the separation of carboxylic acids [8-12]. With 

LC, it is possible to study aqueous carboxylic acid samples with little risk of altering the 

characteristics of the sample. Isotacophoresis and capillary electrophoresis have also 

been used to analyze aqueous carboxylic acid samples [13-18]. 

CE methods also do not require extensive sample pre-treatment and are attractive 

because they require less sample and eluent volumes. CE also has high separation 

efficiency and tremendous potential as a separation technique for organic and inorganic 

samples [19,20]. UV and fluorescence detectors are commonly used on column with CE 

[21-23]. Other CE detectors include laser induced fluorescence, amperometry, and 

conductivity [24-31]. CE can also be combined with a mass spectrometer such as 

electrospray - mass spectrometry (ES-MS) to form CE-ES-MS, a sensitive and selective 

analytical technique [27,32]. The major obstacles encountered when interfacing CE and 

ES-MS are flow rate differences and the incompatibility of the separation buffer with the 

ionization process. 

In conventional capillary zone electrophoresis, using a fused silica capillary, the 

electroosmotic flow (EOF) is toward the negative electrode at most pH values [15]. 
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Therefore, detection is usually carried out at the most negative electrode. Negatively 

charged anions, however, migrate toward the positive electrode and are typically not 

detected due to excessive migration times. In cases where anion migration is greater than 

EOF, the anions do not elute at all. Cationic surfactant is often added to the mobile 

phase to reverse the EOF when analyzing anions [13,32,33]. 

Some work has shown the effectiveness of CE separations with osmotic flow 

modifiers for the detection of carboxylic acids. 21are et al. separated low mass carboxylic 

acids from wine samples with 2-morpholinoethanesulfonic acid and 

tris(hydroxymethyI)aminomethane as a flow modifier, using conductivity detection [13]. 

Kenney used a phthalic acid and a commercially available osmotic flow modifier to 

separate organic acids, such as citric acid, malic acid, acetic acid, and others in food 

samples [16]. Shamsi and Danielson separated anions and organic acids with a mobile 

phase containing boric acid, diethylenetriamine (DETA) as a flow modifier, and 

napthalenedisulfonate as a UV-absorbing electrolyte using CE with indirect absorbance 

detection [18]. 

CE-ES-MS has been proven an effective method for the determination of organic 

and inorganic molecules. Olivares et. al. first combined CE with ES-MS for the 

detection of quaternary ammonium salts using a make-up liquid sheath flow [27,34]. 

Huggins and Henion used CE-ES-MS to separate metal ions at 30 pg levels, but they 

could only detect three anions at 300 pg levels because of complications from the CE 

additives that are needed for the CE separation [35]. Corr and Anacleto separated 

inorganic anions with CE-ES-MS using a pyromellitic acid buffer, which was found to be 
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less obstructive of ES-MS detection [36]. To our knowledge no studies have shown the 

use of CE-ES-MS for the determination of small carboxylic acids. 

The intent of this work is to develop a rapid technique for the determination of 

small carboxylic acids using CE-ES-MS. Of particular interest in this study are 

carboxylic acids found in the electrochemical incineration (ECI) of 4-chlorophenol [37]. 

Therefore studies focused on the separation of four carboxylic acids believed to be 

present in the ECI solution, succinic acid (HO2CCH2CH2CO2H), maleic acid 

(H02CCH=CHC02H), malonic acid (HO2CCH2CO2H), and glutaric acid 

(H02C(CH2)3C02H). It should be noted that glutaric acid is no longer considered to be a 

product of the ECI of 4-chlorophenol. Several different separation schemes were 

examined, and the best results were found with a mixture of pyromellitic acid, NDS, 

DETA, and methanol. Optimum conditions were determined and detection limits were 

examined. 

Experimentai Section 

Reagents and samples 

All water was distilled and then deionized (ISMQ cm'' at 25 °C) with a Branstead 

Nanopure-n system (Newton, MA). The mobile phase consisted of water, methanol 

(Fisher Scientific, Fair Lawn, NJ), pyromellitic acid, NDS-disodium salt, DETA 

(Aldrich Chemical Company, Milwaukee, WI), and was filtered with a Magna-R nylon 

membrane (0.22 /xm pore diameter, Fisher) and degassed under vacuum. A 1CX)0 ppm 

stock solution of each carboxylic acid (Aldrich) was prepared. Aliquots of stock solution 
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were frozen separately to prevent microbial degradation. Samples were thawed and 

refrigerated for no more than 10 days prior to use. Aliquots of each acid stock solution 

were mixed and diluted with water to the desired concentration prior to use. 

Capillary electrophoresis conditioiis 

A Beckman P/ACE 2210 (Beckman Instruments, Palo Alto, CA) was equipped 

with an external dual polarity power supply (Beckman) for use with a mass spectrometer. 

Fused-silica (100-cm length X 100-/im i.d. 170-^m o.d.) was acquired from Polymicro 

Technologies Incorporated (Phoenix, AZ) and used as the separation capillary. 

Separations were carried out with -28.5 kV at the sample inlet vial and -3,5 kV at the 

capillary exit, resulting in a separation voltage difference of 25 kV. Separation voltage 

differences greater than 25 kV caused arcing in the CE. The sample was injected 

pneumatically using nitrogen gas (Air Products) at the inlet vial end of the capillary. 

After sample injection, the inlet end of the separation capillary was inserted in a vial 

containing buffer solution and the inlet electrode. The separation capillary passed 

through the Beckman cooling cartridge, exited the CE, and entered the CE-ES-MS 

interface with no break in the capillary. 

The mobile phase contained 2mM DETA as an EOF modifier. This reagent 

causes the EOF and anions to move in the same direction, towards the more positive end 

of the separation capillary, where the ES-MS detector is located. It is important that the 

electrolyte has mobility similar to that of the analytes and interferes as little as possible 

with ES-MS detection. Many separation schemes were tested in this work including 

2-morpholinoethane sulfonic acid (MES), trishyroxymethylaminomethane (TRIS), 
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benzoate, pyromellitic acid, napthalenedisulfonate (NDS), napthalenemonosulfonate 

(NMS), and napthalenetrisulfonate (NTS). It was determined that the best separation and 

ES-MS detection was achieved with a mixture of pyromellitic acid and NDS. Corr and 

Anacleto demonstrated that pyromellitic acid is less detrimental to ES-MS detection than 

most electrolytes used to separate anions by CE-ES-MS [36]. Shamsi and Danielson 

showed that naphthalenesulfonates act as electrolytes to improve peak shape [18]. NDS 

has an intermediate mobility which makes it suitable for samples containing a wide range 

of analyte types. 

ES-MS conditions 

An API/1 (Perkin-Elmer SCIEX, Thomhill ON, Canada) single quadrupole mass 

spectrometer was used. This apparatus uses a curtain gas interface and has been 

described previously [38,39]. The lonSpray source was operated in the negative ion 

mode to observe anions. Table I summarizes the instrumental operating conditions of the 

ES-MS. These conditions were kept fairly consistent, but a few parameters (marked by 

an asterisk in table I) need optimization every day. Compromise operating conditions 

were determined to provide maximum [M-H]' signals during infusion of simple solutions. 

These same conditions were also used when CE separations were employed. 

CE>ES-MS interface 

The electroosmotic flow generated in the CE capillary is less than 1 /xL/min, 

while the typical flow rate for the ES-MS is approximately 10 /iL/min. The CE-ES-MS 

interface used in this study utilizes a coaxial make-up flow to provide enough liquid flow 

to maintain a stable spray and continuous electrical connection between the sample liquid 
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Table I ES-MS Operating Conditions 

Ionization Source 

Nebulizer Gas Pressure 

Nebulizer Gas Flow Rate 

Sample Flow Rate 

Curtain Gas Pressure 

Curtain Gas Flow Rate 

Curtain Gas Temperature 

Discharge Needle Voltage 

Interface Plate Voltage 

Orifice Plate Voltage 

RF Only Quadrupole Voltage 

Mass Analyzer Quadrupole Voltage 

CEM Detector Voltage 

Operating Pressure of Quadrupole Chamber 

Dwell Time 

m/z Values Monitored 

lonSpray (nebulizer assisted electrospray) 

40 psi, zero grade (99.998%) Nj 

0.6 L min * 

10 fiL min ' 

80 psi, carrier grade (99.999%) N2 

0.7 L min ' 

60°C 

-3500V* 

-400V* 

-116V* 

-lOOV* 

-95V* 

+3000V 

3.5 X lO'^Torr 

200 ms 

m/z =103 (malonate) 
m/z=115 (maleate) 
m/z=117 (succinate) 
m/z=131 (glutarate) 

*Typical values cited. These parameters were adjusted daily to maximize 
ion signal and chromatographic quality, and differed slightly from day to day. 
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and the ES ionization tube. The stable electrical connection is required for both CE 

separation and ES ionization. The make-up liquid also makes it possible to run and 

optimize the ES-MS without flow from the CE. 

The CE-ES-MS interface is shown in figure 1. The inlet end of the separation 

capillary begins in a vial of buffer solution and the capillary proceeds through the coolant 

cartridge of the CE. The capillary exits the cartridge, passes through two T-unions, and 

runs to the ES-MS interface. At the entrance of the first T-union, a 2 cm length of 

PEEK tubing is glued to the outside of the capillary, so that a PEEK fitting can be used 

to hold the capillary in place and seal off the entrance of the T. Within the first T-union, 

a make-up flow of buffer solution surrounds the separation capillary in a coaxial flow of 

10 /iL/min, pumped from a Cole-Parmer syringe pump (Niles, IL) and a Hamilton 

syringe (Reno, NV). A variety of make-up flow solutions were tested, using the same 

components as the separation buffer at different concentrations. Solutions with higher 

methanol content or lower electrolyte concentrations than the separation buffer were 

expected to give better signal in the ES-MS. It was determined, however, that the best 

separations and reproducibility are obtained when the separation buffer and make-up flow 

solution are identical. The capillary and make-up buffer exit the first T-union enclosed 

within a 4-inch-long stainless steel ES ionization tube (Hamilton). The ionization tube 

enclosing both the separation capillary and make-up buffer continues through the second 

T-union, where a nitrogen nebulizer gas flow surrounds the tube. Finally, the ionization 

tube exits the second T-union through the ES nebulizer tube. The capillary ends inside 

the ionization tube approximately one mm from the tube tip where the sample is mixed 
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with the make-up buffer. The liquid contact with the ES ionization tube provides 

electrical contact. 

Results and Discussion 

Evaluation of mobile phase 

The mobile phase for the CE-ES-MS determination of carboxylic acids was 

evaluated by observing signal intensity and separation quality while changing the 

concentration of the mobile phase components. Figures 2 and 3 show the effect of 

pyromellitic acid concentration on maleate (Fig. 2) and glutarate (Fig. 3) ion signals. All 

other experimental conditions were held constant. Maleate ion signal intensity improved 

by nearly a factor of 10 when the pyromellitic acid concentration was increased from 

2mM to 6mM (Fig. 2). Separation time also decreased as the concentration of 

pyromellitic acid increased. Conversely, glutarate ion signal and separation quality 

decreased with increased pyromellitic acid (Fig. 3). With 6mM pyromellitic acid, the 

glutarate signal is almost completely lost. A compromise pyromellitic acid concentration 

of 4mM was chosen to give reasonable results for both maleate and glutarate ions. 

Figure 4 and 5 show the effects of increasing NDS concentration. NDS is 

typically used in CB separations as a UV absorber for indirect detection, however it has 

been shown that including NDS in electrolyte solutions can improve peak shape [18]. 

The maleate ion peak shape improves with increasing NDS concentration (Fig. 4) while 

malonate signal improves slightly with decreasing levels of NDS (Fig. 5). Once again, a 
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compromise concentration, 4mM NDS, was used to acquire good spectra from both 

maleic and malonic acid. 

The effects of methanol concentration are presented in Figure 6. Increased 

methanol concentration, at least up to 50% methanol, generally increases ion signal in 

ES-MS. However, methanol has adverse effects on the quality of this CE separation. 

Increased methanol concentration results in longer retention times and poor resolution in 

the electropherograms. A concentration of 20% methanol was determined to give the 

best ion signal in the ES-MS without reducing the quality of the separation. 

Figure 7 shows single-ion electropherograms obtained using the compromise 

mobile phase conditions for the separation of the four carboxylic acid standards. Sample 

concentrations were 0.1 mM, and the mobile phase consisted of 4mM pyromellitic acid, 

4mM NDS, 2mM DETA, and 20% methanol. Detection limits were determined to range 

between 1 and 10 ppm (120-1200 pg) and are shown in table 2. 

Table H. Detection Limits 

Analyte Concentration Absolute 

Malonic Acid 1 ppm 100 pg 

Succinic Acid 2 ppm 200 pg 

Maleic Acid 10 ppm 1200 pg 

Glutaric Acid 4 ppm 500 pg 
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Conclusions 

The CE-ES-MS system developed in this study successfully determined carboxylic 

acids at the 1-10 ppm level. Detection limits are poor due to the small actual mass of 

analyte that enters the ES-MS, the substantial dilution of the analyte caused by the make­

up flow, and a very high and noisy background. The system is also inconsistent and 

without improvements it would be difficult to use this system to identify the components 

of complex unknown solutions. Improvements in the system may be possible with a 

micro ES ionization source (MESI) [40,41]. MESI requires less liquid flow in the 

ionization process, which allows for the use of a lower make-up flow rate and less 

dilution of the sample. 

Substantial background noise could be reduced by using a triple quadrupole mass 

spectrometer (MS-MS). All four of the acids studied are dicarboxylic acids, meaning 

they will readily lose COj during collisions. A detection scheme searching for the loss of 

COj from the parent ions could be employed, using MS-MS. This scheme would 

practically eliminate signal from all ions other than the analytes of interest. 
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Figure 1. Schematic diagram for CE-ES-MS interface. 
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Figure 2. CE-ES-MS single-ion electropherograms for 1 mM Maleate ion 
using a buffer containing (a) 2mM, (b) 4mM, (c) 6mM pyromellitic acid, 
4mM NDS, 2mM DETA, and 20% methanol. The separation voltage 
difference was 25 kV. 
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Figure 3. CE-ES-MS single-ion electropherograms for 1 mM glutarate ion 
using a buffer containing (a) 2mM, (b) 4mM, (c) 6mM pyromellitic acid, 
4mM NDS, 2mM DETA, and 20% methanol. The separation voltage 
difference was 25kV. 
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Figure 4. CE-ES-MS single-ion electropherograms for ImM maleate 
ion using a buffer containing (a) 2mM, (b) 4mM, (c) 6mM NDS, 
4mM pyromellitic acid, 2mM DETA, and 20% methanol. The 
separation voltage difference was 25kV. 
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Figure 5. CE-ES-MS single-ion eleclropherograms for ImM malonate 
ion using a buffer containing (a) 2mM, (b) 4mM, (c) 6mM, NDS, 4mM 
pyromellitic acid, 2mM DETA, and 20% methanol. The separation 
voltage difference was 25 kV. 
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Figure 6. CE-ES-MS single-ion electropherograms for ImM malonate 
ion using a buffer containing (a) 10%, (b) 20%, (c) 50% methanol, 
4mM pyromellitic acid, 4mM NDS, and 2mM DETA. The separation 
voltage difference was 25 kV. 
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Figure 7. Single ion electropherograms for 0.1 mM malonate, succinate, 
maleate, and glutarate ions. The buffer contained 4mM pyromellitic acid, 
4mM NDS, 2 mM DETA, and 20% methanol. The separation voltage 
difference was 25 kV. 
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CHAPTER 6. GENERAL CONCLUSION 

The main focus of this dissertation has been the use of liquid chromatography 

(LC) coupled with electrospray mass spectrometry (ES-MS) for the determination of both 

inorganic and organic compounds in aqueous solution. LC-ES-MS combines retention 

and structural data to provide a powerful technique for the identification of unknown 

compounds in complex solutions. Primary focus has been given to electrochemical 

incineration (ECI) and the determination of ECI products and intermediates. 

Chapter 2 presented the study of small carboxylic acids using ion exclusion 

chromatography (lEC) and ES-MS. Experimental conditions were examined and 

compromise conditions were determined, while considering pH, sheath gas, mobile phase 

composition, and matrix effect. 

Chapter 3 implemented the EEC-ES-MS method to examine the complex unknown 

solution produced during ECI of benzoquinone. The ECI procedure and electrode were 

explained and evaluated. Intermediates and products were determined and examined with 

respect to incineration time, and mechanisms were proposed for the production of maleic, 

succinic, malonic, and acetic acids by the ECI of benzoquinone. 

The ECI of 4-chlorophenol was studied in chapter 4. Reverse phase 

chromatography-ES-MS was used for the determination of aromatic compounds, while 

ion exclusion chromatography-ES-MS was used to study both organic and inorganic ions. 

The ion exchange chromatography-ES-MS system utilizes a suppressor between the 

separation column and the ES-MS to remove sodium ions fi'om the mobile phase. Both 
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LC-ES-MS techniques offer superior separation quality and detection limits compared to 

lEC-ES-MS. Other techniques including, chemical oxygen demand, total organic carbon, 

pH and gas chromatography-mass spectrometry, were also used to study the ECI product 

of 4-chlorophenol. The major intermediates were determined to be benzoquinone, 

malonic, succinic, and maleic acids, as well as inorganic chlorine-containing anions, such 

as chloride, chlorate, and perchlorate. Pathways were also suggested for the ECI 

reaction. 

Chapter 5 reported preliminary studies from coupling capillary electrophoresis 

(CE) with ES-MS. A sheath flow of supporting electrolyte was required for sufficient 

electrical connection and liquid volume. The mobile phase composition was studied to 

provide the best compromise results for the observation of four carboxylic acids. 

Although CE-ES-MS has great potential, with low sample volume and efficient 

separation, detection limits and reproducibility were poor. 

The LC-ES-MS methods used in this work have proven effective for the 

identification of unknown compounds in complex aqueous solutions. Future work to 

improve LC-ES-MS may focus on reducing the high background noise present in the ES-

MS signal. The addition of TurboIonSpray reduces some noise, but more improvement is 

needed. One possible area of improvement is the ionization tube and the quality of the 

spray. The production of small droplets in a well-focused spray can lead to improved 

ionization efficiency and better sensitivity. Recent work involving nanoelectrospray 

ionization [1] and ultrasonic nebulization ES-MS [2] seem to be achieving some signal 

improvements. 
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The ECI apparatus and procedure successfully oxidizes various organic 

compounds without producing environmentally hazardous intermediates and products. 

Most pathways for the formation of CO2 from larger molecules involve carboxylic acid 

intermediates. Faster and more efflcient ECI may be achieved by focusing on the 

oxidation of these carboxylic acids. Perhaps the addition of new metal oxides to the 

existing quaternary metal oxide film will result in faster waste remediation by ECI. 

Advancements can also be made with novel sampling methods for ECI studies. 

One such sampling technique involves pulling ECI products from the electrode surface 

during ECI to observe the intermediates of the reaction without sampling the bulk of the 

solution. Sampling at the electrode surface was attempted in this laboratory with mixed 

results. The rise and fall of intermediate concentrations was observed, as seen for formic 

acid during the ECI of benzoquinone in figure 1, but the solution sampled represented 

mostly bulk solution, and provided no specific information about the reactions at the 

electrode surface. Perhaps a lower liquid flow and more precise and stable inlet 

placement would reduce the amount of bulk solution sampled and provide more 

information about the reactions at the electrode surface. 

1 

2 
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Figure 1. Real-time monitoring of formate ion (m/z=45) near 
the electrode surface during the ECI of 100 ppm benzoquinone. 
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